Package 'bayesMeanScale’

May 18, 2024

Type Package

Title Bayesian Post-Estimation on the Mean Scale
Version 0.1.2
URL https://github.com/dalenbe2/bayesMeanScale
BugReports https://github.com/dalenbe2/bayesMeanScale/issues
Description Computes Bayesian posterior distributions of predictions, marginal effects, and differences of marginal effects for various generalized linear models. Importantly, the posteriors are on the mean (response) scale, allowing for more natural interpretation than summaries on the link scale. Also, predictions and marginal effects of the count probabilities for Poisson and negative binomial models can be computed.
License GPL (>=3)
Encoding UTF-8
Imports bayestest $(>=0.13 .2)$, data.table ($>=1.15 .2$), magrittr ($>=$ 2.0.3), posterior ($>=1.5 .0$)

Depends R (>= 3.5.0)
Suggests flextable ($>=0.9 .5$), knitr ($>=1.45$), rmarkdown ($>=2.26$), rstan, rstanarm, tibble ($>=3.2 .1$), testthat ($>=3.0 .0$)

Config/testthat/edition 3
VignetteBuilder knitr
NeedsCompilation no
Author David M. Dalenberg [aut, cre]
Maintainer David M. Dalenberg <dalenbe2@gmail. com>
Repository CRAN
Date/Publication 2024-05-18 12:30:02 UTC

R topics documented:

bayesCountMargEffF 2
bayesCountPredsF 4
bayesMargCompareF 6
bayesMargEffF 7
bayesPredsF 9
Index 12
bayesCountMargEffF Bayesian marginal effects on count probabilities.

Description

Computes Bayesian marginal effects on count probabilities. Models must have a family of "poisson"" or "neg_binomial_2" and be fit using the "rstanarm" package. Marginal effects can be averaged over the values of the covariates in the data (average marginal effects), or the covariates can be held at their means (marginal effects at the means). Also, "at" values can be specified to fix covariates at particular values. The marginal effects must be specified in terms of discrete changes. When investigating continuous variables this might be specified as the change between the mean and 1 standard deviation above the mean, for example.

Usage

bayesCountMargEfff (model,

$$
\begin{array}{ll}
\begin{array}{l}
\text { counts, } \\
\text { marginal_effect, }
\end{array} \\
\text { start_value, } \\
\text { end_value, } & \\
\text { n_draws } & =2000, \\
\text { ci } & =.95, \\
\text { hdi_interval } & =\text { TRUE, } \\
\text { centrality } & ='^{\prime} \text { mean', } \\
\text { digits } & =4, \\
\text { at } & =\text { NULL, } \\
\text { at_means } & =\text { FALSE })
\end{array}
$$

Arguments

\(\left.$$
\begin{array}{ll}\begin{array}{l}\text { model } \\
\text { counts } \\
\text { marginal_effect }\end{array} & \begin{array}{l}\text { A model object of class "stanreg." } \\
\text { Vector of counts to get the predicted probabilities for. }\end{array}
$$

A character vector of terms that you want to estimate the marginal effect for.\end{array}\right]\)| The start value(s) for the marginal effect(s). Must be a list when specifying |
| :--- |
| multiple values. |

hdi_interval	If TRUE, the default, computes the highest density credible interval. If FALSE, computes the equal-tailed interval.
centrality	Centrality measure for the posterior distribution. Options are "mean" or "me- dian".
digits	The number of digits to report in the summary table.
at	Optional list of covariate values to estimate the marginal effect at.
at_means	If FALSE, the default, the marginal effects are averaged across the rows of the data. If TRUE, the covariate values that are not specified in the "at" argument are held at their means.

Details

Marginal effects on count probabilities give you useful information to complement post estimation summaries on the mean scale.

Value

A list of class "bayes_mean_scale_marg" with the following components:
diffTable summary table of the marginal effects
diffDraws posterior draws of the marginal effects

Author(s)

David Dalenberg

References

Long, J. Scott and Jeremy Freese. 2001. "Predicted Probabilities for Count Models." Stata Journal 1(1): 51-57.

Examples

```
if(require(rstanarm)){
crabs <- read.table("https://users.stat.ufl.edu/~aa/cat/data/Crabs.dat",
    header = TRUE)
poissonModel <- rstanarm::stan_glm(sat ~ weight + width,
    data = crabs,
    family = poisson,
    refresh = 0,
    iter = 500)
# marginal effect holding covariates at their means #
bayesCountMargEffF(poissonModel,
```

```
counts = 1,
marginal_effect = 'width',
start_value = 25,
end_value = 20,
at_means = TRUE,
n_draws = 500)
```

\}
bayesCountPredsF Bayesian predictions of count probabilities.

Description

Computes Bayesian predictions for count probabilities. Models must have a family of "poisson"" or "neg_binomial_2" and be fit using the "rstanarm" package. Predictions can be averaged over the values of the covariates in the data (average marginal predictions), or the covariates can be held at their means (marginal predictions at the means). Also, "at" values must be specified to fix at least one covariate at particular values.

Usage

Arguments

model A model object of class "stanreg."
counts Vector of counts to get the predicted probabilities for.
at List of covariate values to estimate the predictions at.
n_draws The number of draws to take from the posterior distribution of the expectation.
ci The level for the credible intervals.
hdi_interval If TRUE, the default, computes the highest density credible interval. If FALSE, computes the equal-tailed interval.
centrality Centrality measure for the posterior distribution. Options are "mean" or "median".

digits	The number of digits to report in the summary table.
at_means	If FALSE, the default, the predictions are averaged across the rows of the model
data for each unique combination of "at" values. If TRUE, the covariate values	
that are not specified in the "at" argument are held at their means.	

Details

Predicted count probabilities give you useful information to complement post estimation summaries of the mean.

Value

A list of class "bayes_mean_scale_pred" with the following components:
predTable summary table of the predictions
predDraws posterior draws of the predictions

Author(s)

David Dalenberg

References

Long, J. Scott and Jeremy Freese. 2001. "Predicted Probabilities for Count Models." Stata Journal 1(1): 51-57.

Examples

```
if(require(rstanarm)){
crabs <- read.table("https://users.stat.ufl.edu/~aa/cat/data/Crabs.dat",
    header = TRUE)
poissonModel <- rstanarm::stan_glm(sat ~ weight + width,
    data = crabs,
    family = poisson,
    refresh = 0,
    iter = 500)
bayesCountPredsF(poissonModel,
    counts = c(0,1),
    at = list(weight=c(2,3)),
    n_draws = 500)
}
```


Description

Tests the differences between all marginal effects in the "bayes_mean_scale_marg" object that is passed to it. This is particularly useful for testing non-linear interaction effects.

Usage

bayesMargCompareF(marg_list,

$$
\begin{array}{ll}
\mathrm{ci} & =0.95, \\
\text { hdi_interval } & =\text { TRUE, } \\
\text { centrality } & =\text { 'mean' } \\
\text { digits } & =4)
\end{array}
$$

Arguments

marg_list An object of class "bayes_mean_scale_marg."
ci
The level of the credible interval.
hdi_interval If TRUE, the default, computes the highest density credible interval. If FALSE, computes the equal-tailed interval.
centrality Centrality measure for the posterior distribution. Options are "mean" or "median".
digits \quad The number of digits to report in the summary table.

Details

All possible differences of marginal effects contained in the "bayes_mean_scale_marg" object are computed.

Value

A list of class "bayes_mean_scale_marg_compare" with the following components:
diffTable summary table of the differences of the marginal effects
diffDraws posterior draws of the differences of the marginal effects

Author(s)

David Dalenberg

References

Mize, Trenton D. 2019. "Best Practices for Estimating, Interpreting, and Presenting Non-linear Interaction Effects." Sociological Science 6: 81-117.

Examples

```
## Logit model ##
if(require(rstanarm)){
m1 <- rstanarm::stan_glm(switch ~ dist + educ + arsenic + assoc,
    data = rstanarm::wells,
    family = binomial,
    refresh = 0,
    iter = 500)
m1Marg <- bayesMargEffF(m1,
    marginal_effect = 'arsenic',
    start_value = 2.2,
    end_value = .82,
    at = list(educ=c(0, 5)),
    n_draws = 500)
bayesMargCompareF(m1Marg)
}
```

bayesMargEffF Bayesian marginal effects on the mean scale.

Description

Computes Bayesian marginal effects on the mean scale for models fit using the package "rstanarm". Marginal effects can be averaged over the values of the covariates in the data (average marginal effects), or the covariates can be held at their means (marginal effects at the means). Also, "at" values can be specified to fix covariates at particular values. The marginal effects must be specified in terms of discrete changes. When investigating continuous variables this might be specified as the change between the mean and 1 standard deviation above the mean, for example.

Usage

bayesMargEffF (model,

```
n_draws
    = 2000,
    marginal_effect,
    start_value,
    end_value,
    ci = .95,
    hdi_interval = TRUE,
```

```
centrality = 'mean',
digits = 4,
at = NULL,
at_means = FALSE)
```


Arguments

model	A model object of class "stanreg."
n_draws	The number of draws to take from the posterior distribution of the expectation.
marginal_effect	
	A character vector of terms that you want to estimate the marginal effect for.
start_value	The start value(s) for the marginal effect(s). Must be a list when specifying multiple values.
end_value	The end value(s) for the marginal effect(s). Must be a list when specifying multiple values.
ci	The level for the credible intervals.
hdi_interval	If TRUE, the default, computes the highest density credible interval. If FALSE, computes the equal-tailed interval.
centrality	Centrality measure for the posterior distribution. Options are "mean" or "median".
digits	The number of digits to report in the summary table.
at	Optional list of covariate values to estimate the marginal effect at.
at_means	If FALSE, the default, the marginal effects are averaged across the rows of the data. If TRUE, the covariate values that are not specified in the "at" argument are held at their means.

Details

Currently, the following families of fixed-effect models fit using "rstanarm" are supported: 'beta', 'binomial', 'Gamma', 'gaussian', 'neg_binomial_2', and 'poisson.' Future versions of the package will contain support for additional models.

Value

A list of class "bayes_mean_scale_marg" with the following components:
diffTable summary table of the marginal effects
diffDraws posterior draws of the marginal effects

Author(s)

David Dalenberg

References

Agresti, Alan. 2013. Categorical Data Analysis. Third Edition. New York: Wiley
Long, J. Scott and Sarah A. Mustillo. 2018. "Using Predictions and Marginal Effects to Compare Groups in Regression Models for Binary Outcomes." Sociological Methods \& Research 50(3): 1284-1320.

Mize, Trenton D. 2019. "Best Practices for Estimating, Interpreting, and Presenting Non-linear Interaction Effects." Sociological Science 6: 81-117.

Examples

```
## Logit model ##
if(require(rstanarm)){
m1 <- rstanarm::stan_glm(switch ~ dist + educ + arsenic + assoc,
    data = rstanarm::wells,
    family = binomial,
    refresh = 0,
    iter = 500)
# marginal effect averaging over sample values of covariates #
bayesMargEffF(m1,
    marginal_effect = 'arsenic',
    start_value = 2.2,
    end_value = . 82,
    n_draws = 500)
}
```


Description

Computes Bayesian predictions on the mean scale for models fit using the package "rstanarm". Predictions can be averaged over the values of the covariates in the data (average marginal predictions), or the covariates can be held at their means (marginal predictions at the means). Also, "at" values must be specified to fix at least one covariate at particular values.

Usage

bayesPredsF (model,
at,
n_draws $=2000$,
ci $=.95$,
hdi_interval = TRUE,
centrality = 'mean',
digits $=4$,
at_means = FALSE)

Arguments

model A model object of class "stanreg."
at List of covariate values to estimate the predictions at.
n_draws The number of draws to take from the posterior distribution of the expectation.
ci The level for the credible intervals.
hdi_interval If TRUE, the default, computes the highest density credible interval. If FALSE, computes the equal-tailed interval.
centrality Centrality measure for the posterior distribution. Options are "mean" or "median".
digits The number of digits to report in the summary table.
at_means If FALSE, the default, the predictions are averaged across the rows of the model data for each unique combination of "at" values. If TRUE, the covariate values that are not specified in the "at" argument are held at their means.

Details

Currently, the following families of fixed-effect models fit using "rstanarm" are supported: 'beta', 'binomial', 'Gamma', 'gaussian', 'neg_binomial_2', and 'poisson.' Future versions of the package will contain support for additional models.

Value

A list of class "bayes_mean_scale_pred" with the following components:
predTable summary table of the predictions
predDraws posterior draws of the predictions

Author(s)

David Dalenberg

References

Agresti, Alan. 2013. Categorical Data Analysis. Third Edition. New York: Wiley
Long, J. Scott and Sarah A. Mustillo. 2018. "Using Predictions and Marginal Effects to Compare Groups in Regression Models for Binary Outcomes." Sociological Methods \& Research 50(3): 1284-1320.

Mize, Trenton D. 2019. "Best Practices for Estimating, Interpreting, and Presenting Non-linear Interaction Effects." Sociological Science 6: 81-117.

Examples

```
## Logit model ##
if(require(rstanarm)){
m1 <- rstanarm::stan_glm(switch ~ dist + educ + arsenic + assoc,
                        data = rstanarm::wells,
                        family = binomial,
                        refresh = 0,
                        iter = 500)
# marginal predictions holding covariates at means #
bayesPredsF(m1,
    at = list(arsenic = c(.82, 1.3)),
    at_means = TRUE,
    n_draws = 500)
}
```


Index

bayesCountMargEffF, 2
bayesCountPredsF, 4
bayesMargCompareF, 6
bayesMargEffF, 7
bayesPredsF, 9

