Package 'cmahalanobis'

May 20, 2024

Type Package

Title Calculate Distance Measures for a Given List of Data Frames with Factors

Version 0.3.0

Author Flavio Gioia

Maintainer Flavio Gioia <flaviogioia.fg@gmail.com>

Description

It provides functions that calculate Mahalanobis distance, Euclidean distance, Manhattan distance and Chebyshev distance between each pair of species in a list of data frames. These metrics are fundamental in various fields, such as cluster analysis, classification, and other applications of machine learning and data mining, where assessing similarity or dissimilarity between data is crucial. The package is designed to be flexible and easily integrated into data analysis workflows, providing reliable tools for evaluating distances in multidimensional contexts.

License GPL-3

Encoding UTF-8 RoxygenNote 7.2.3 Imports stats, ggplot2, reshape2 Suggests knitr, rmarkdown, testthat (>= 3.0.0) NeedsCompilation no VignetteBuilder knitr Config/testthat/edition 3 Repository CRAN Date/Publication 2024-05-20 13:10:03 UTC

R topics documented:

cchebyshev .												•						•										•		•	•	•								
ceuclide			•						•																•	•		•			•					•				
cmahalanobis			•								•	•						•				•	•		•	•		•			•	•				•		•		
cmanhattan .																												•												
cinamatan .	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	·	•	·	•	•	·	•	•	•	•	•

Index

cchebyshev

Description

Calculate Chebyshev distance

Usage

```
cchebyshev(
   dataset,
   plot = FALSE,
   p.value = FALSE,
   num.permutations = 1000,
   plot_title = "Chebyshev Distance Between Groups"
)
```

Arguments

dataset	A list of dataframes
plot	If TRUE, displays a plot of distances
p.value	If TRUE, calculates p-values of distances
num.permutation	IS
	Number of permutations to calculate p-values
plot_title	The title of plot

Value

A list containing distances and, optionally, p-values

ceuclide

Calculate Euclidean distance

Description

Calculate Euclidean distance

Usage

```
ceuclide(
  dataset,
  plot = FALSE,
  p.value = FALSE,
  num.permutations = 1000,
  plot_title = "Euclidean Distance Between Groups"
)
```

cmahalanobis

Arguments

dataset	A list of dataframes
plot	If TRUE, shows a plot of distances
p.value	If TRUE, calculates p-values for distances
num.permutatio	ns
	Number of permutations to calculate p-values
plot_title	The title of plot

Value

A list containing distances and, optionally, p-values

cmahalanobis

Calculate the Mahalanobis distance for each species

Description

. This function takes a list of data frames as input, where each data frame contains the observations of a species, and returns a matrix with the Mahalanobis distances between each pair of species.

Usage

```
cmahalanobis(
  dataset,
  plot = TRUE,
  p.value = FALSE,
  plot_title = "Mahalanobis Distance Between Groups"
)
```

Arguments

dataset	A list of data frames, where each data frame contains the observations of a species.
plot	Logical, if TRUE, a plot of the Mahalanobis distances is displayed.
p.value	Logical, if TRUE, a matrix of p-values for the distances is returned.
plot_title	The title to be used for the plot if plot is TRUE.

Value

A list containing a matrix with the Mahalanobis distances between each pair of groups, and optionally a matrix of p-values and the plot.

Examples

```
# Example with the iris dataset
library(stats)
# Split the data into 3 parts for each species
setosa <- subset(iris, Species == "setosa")</pre>
setosa <- setosa[,-5]</pre>
versicolor <- subset(iris, Species == "versicolor")</pre>
versicolor <- versicolor[,-5]</pre>
virginica <- subset(iris, Species == "virginica")</pre>
virginica <- virginica[,-5]</pre>
# Create a list with the three groups of flowers
groups <- list(setosa, versicolor, virginica)</pre>
# Calculate the Mahalanobis distance with the cmahalanobis function
cmahalanobis(groups, plot = TRUE, p.value = FALSE,
plot_title = "Mahalanobis Distance Between Groups")
ceuclide(groups, plot = TRUE, p.value = TRUE,
plot_title = "Euclidean Distance Between Groups")
cmanhattan(groups, plot = TRUE, p.value = TRUE,
plot_title = "Manhattan Distance Between Groups")
cchebyshev(groups, plot = TRUE, p.value = TRUE,
plot_title = "Chebyshev Distance Between Groups")
# Example with the mtcars dataset
library(stats)
# Split the data into 2 parts for each type of transmission
auto <- subset(mtcars, am == 0)</pre>
auto <- auto[,-9]</pre>
manual <- subset(mtcars, am == 1)</pre>
manual <- manual[,-9]</pre>
# Create a list with the two groups of cars
groups <- list(auto, manual)</pre>
# Calculate the Mahalanobis distance with the cmahalanobis function
cmahalanobis(groups, plot = TRUE, p.value = TRUE,
plot_title = "Mahalanobis Distance Between Groups")
ceuclide(groups, plot = TRUE, p.value = TRUE, num.permutations = 1000,
plot_title = "Euclidean Distance Between Groups")
cmanhattan(groups, plot = TRUE, p.value = TRUE, num.permutations = 1000,
plot_title = "Manhattan Distance Between Groups")
cchebyshev(groups, plot = TRUE, p.value = TRUE, num.permutations = 1000,
plot_title = "Chebyshev Distance Between Groups")
```

cmanhattan

Calculate Manhattan distance

4

cmanhattan

Description

Calculate Manhattan distance

Usage

```
cmanhattan(
  dataset,
  plot = FALSE,
  p.value = FALSE,
  num.permutations = 1000,
  plot_title = "Manhattan Distance Between Groups"
)
```

Arguments

dataset	A list of dataframes
plot	If TRUE, show a plot of distances
p.value	If TRUE, calculates p-values to distances
num.permutation	S
	Number of permutations to calculate p-values
plot_title	The title of plot

Value

A list containing distances and, optionally, p-values

Index

cchebyshev, 2
ceuclide, 2
cmahalanobis, 3
cmanhattan, 4