% % 'smptalk.tex' sample slide presentation - courtesy of karen bibb % % typical (unix) processing sequence for postscript printer: % % latex smptalk - create dvi file % xdvi -paper usr smptalk - preview dvi file % dvips -t landscape smptalk - transform dvi file to postscript % ghostview -landscape -swap smptalk.ps - check postscript output % lpr smptalk.ps - print postscript file \documentclass[landscape]{slides} % load custom command definitions and other default settings: \usepackage{smptalk} % un-comment for ``page'' numbers: %\pagestyle{plain} % un-comment for processing only a select few slides or notes: %\onlyslides{1-2,5,10-999} %\onlynotes{1-2,12} % or, for interactive prompting, un-comment the following: %\typein[\slides]{Which slides to do?} %\onlyslides{\slides} %\onlynotes{\slides} \begin{document} \begin{slide}\typeout{Title:} \begin{center} {\Large\bf Hypersonic Flow Computations On Unstructured Meshes} {\large\bf AIAA 97--0625} \begin{tabular}{cc} K. L. Bibb & J. Peraire \\[.1in] \it NASA Langley Research & \it Massachusetts Institute \\ \it Center & \it of Technology \\ \it Hampton, Virginia & \it Cambridge, Massachusetts \end{tabular} C. J. Riley \\[.1in] \it NASA Langley Research Center \\ Hampton, Virginia \end{center} \end{slide} \begin{note} \begin{describe}[1.5in] \item [Session] Applied Computational Aero \item [Time] wed afternoon \item [Mention] colleagues \begin{items} \item Ram Prabhu for running codes \item Bill Scallion \& Matt Rhode for UPWT data \end{items} \end{describe} \end{note} \begin{slide}\typeout{Background:} \title{Background} \begin{items} \item Rapid, accurate aerodynamic screening capability is needed: \begin{items} \item aerodynamic performance coefficients \item pressure loads for preliminary structural analysis \item general flow features, for example, shock location \end{items} \item Unstructured grids offer flexible and rapid grid generation \item Historically, unstructured Euler schemes are not robust hypersonically \end{items} \end{slide} \begin{slide}\typeout{Outline:} \title{Outline} \leftmargin 3in \begin{items} \item Computational algorithm \item Comparisons to other codes\\ and experiment \item Use as a screening tool \item Concluding remarks \end{items} \end{slide} \begin{note} \begin{items} \item details are in the paper for the algorithm \item screening tools are talked about throughout \end{items} \end{note} \begin{slide}\typeout{Flow solver (overview):} \title{FELISA System} \begin{items} \item Unstructured mesh generation \item `Standard' Euler flow solver, for subsonic $\Rightarrow$ low supersonic \item Hypersonic Euler flow solver, FELISA\_HYP \begin{items} \item perfect gas \item equilibrium air \item CF$_4$ \end{items} \item Parallel versions of flow solvers \end{items} \end{slide} \begin{note} \begin{items} \item for parallel: work on IBM sP2, J90, workstation clusters. \item not used for the calculations in the paper \end{items} \end{note} \begin{slide}\typeout{Flow solver (FELISA):} \title{Unstructured Inviscid\\ Hypersonic Flow Solver\\ (FELISA\_HYP)} \leftmargin 3in \begin{items} \item Euler equations \item Finite volume formulation \item Edge data structure \item H\"{a}nel flux vector splitting \item MUSCL reconstruction \item Explicit time stepping \end{items} \end{slide} \begin{note} \title{Time Stepping} \leftmargin 2.5in \begin{items} \item check to ensure monotonicity \item eliminate limit cycle behavior \end{items} \end{note} \begin{slide}\typeout{Edge Data Structure:} \title{Edge Data Structure} \begin{center} \begin{minipage}{.45\linewidth} \incfig[\linewidth]{smpfig} \end{minipage} \hspace{0.05\linewidth} \begin{minipage}{.45\linewidth} \begin{items} \item control volumes are tetrahedra surrounding each node \item fluxes computed across outer faces of control volume \item flux computations grouped by edge \end{items} \end{minipage} \end{center} \end{slide} \begin{note} \title{Old Edge Data Structure notes\ldots} \leftmargin 2in \begin{items} \item edge il is used in all of the figures\ldots\ \end{items} \leftmargin 0in \begin{tabular}{p{.45\linewidth}p{.45\linewidth}} \begin{items} \item fluxes computed across faces of tetrahedra \item control volume is tetrahedra \item nodal info for cells is stored \end{items}& \begin{items} \item fluxes computed across $S^e$ for all edges of node~$i$ \item control volume surrounds node \item weights for $S^e$ stored \end{items} \end{tabular} \end{note} \begin{slide} \typeout{Flux vector splitting:} \title{H\"anel Flux Vector Splitting} \begin{items} \item Upwind formulation; allows for stable computations across strong shocks \item No 'free' parameters are required \item Allows for constant enthalpy solution where solution is fully converged \end{items} \end{slide} \begin{slide}\typeout{Reconstruction:} \title{Gradient Reconstruction} \incfig[.8\linewidth]{smpfig} \end{slide} \begin{note} \title{Gradient Reconstruction notes} \begin{items} \item compare to structured grid gradient calculation\\ \item edge il is used in all of the figures...\\ \item MUSCL reconstruction (Monotone Upwind Scheme Conservation Law) \end{items} \end{note} \begin{slide}\typeout{NASA's use of FELISA:} \title{Recent Applications of the FELISA System} \leftmargin 1in \begin{items} \item Lockheed-Martin RLV/X-33 Phase I; aerodynamics \item Lockheed-Martin RLV/X-33 Phase II; Ascent shock interaction study; transonic aerodynamic screening \item McDonnell Douglas Phase I RLV/X-33; control surface loading (NASA CR 201606) and aerodynamics\\ (subsonic $\Rightarrow$ hypersonic) \item OSC X-34, transonic screening, control surface loading \end{items} \end{slide} \begin{slide}\typeout{X-33 body:} \title{Code to Code Comparisons for\\ Preliminary Lockheed--Martin X-33 Vehicle} \begin{items} \item Codes:\\ -- FELISA\_HYP: inviscid, unstructured mesh\\ -- LAURA: viscous, structured grid\\ -- DPLUR: inviscid, structured grid, parallel \item Flow feature, surface pressure comparisons:\\ -- $M_\infty = 9.8$, $\alpha = 40^{\circ}$ \item Aerodynamic force and moment comparisons:\\ -- $M_\infty = 4.5$, experimental data from LaRC UPWT \end{items} \end{slide} \begin{slide} \title{X33 Configuration} \begin{center} \begin{tabular}{cc} \incfig[.45\linewidth]{smpfig}& \incfig[.45\linewidth]{smpfig} \end{tabular} \end{center} \end{slide} \begin{note} \title{Code to Code Comparisons for Preliminary Lockheed--Martin X-33 Vehicle} \leftmargin 3in \begin{items} \item mention code authors \end{items} \end{note} \begin{slide}\typeout{How has FELISAHYP been used?} \title{Grid Generation Time Comparisons} \begin{items} \item Initial geometry definition, surface and volume mesh generation for an X-33 configuration, first~time~$\|$ most~recent: \begin{items} \item FELISA: 1.5 weeks $\|$ 4 days \item structured: 6 weeks $\|$ 3.5 weeks \end{items} \item Case-specific grid generation: bow shock spacing: time consuming for FELISA, 1-2 days control surface deflections: \begin{items} \item $1/2$ day for unstructured \item $1/2$ week for LAURA \end{items} \end{items} \end{slide} \begin{note} \title{Grid Generation Time Comparisons} \begin{describe}[.9in] \item[felisa] put together surfaces, intersection curves, topology \item[laura] build surface on cad \end{describe} \end{note} \begin{slide}\typeout{Concluding Remarks:} \title{Concluding Remarks} \begin{items} \item FELISA\_HYP flow solver developed\\ \item Applied FELISA System with FELISA\_HYP to complex \\configurations \begin{items} \item Comparable accuracy to structured grid solvers \item Faster turn--around time than structured grid methods \end{items} \item Significant impact on major NASA programs \end{items} \end{slide} \end{document}