/* Copyright (C) 2021 Free Software Foundation, Inc. Contributed by Oracle. This file is part of GNU Binutils. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef _CPU_FREQUENCY_H #define _CPU_FREQUENCY_H #ifdef __cplusplus extern "C" { #endif #include #include /* processor_info_t */ #include typedef unsigned char uint8_t; #define MAXSTRLEN 1024 /* * This file provide the api to detect Intel CPU frequency variation features */ #define COL_CPUFREQ_NONE 0x0000 #define COL_CPUFREQ_SCALING 0x0001 #define COL_CPUFREQ_TURBO 0x0002 #if defined(__i386__) || defined(__x86_64) // XXXX This is a rough table to estimate frequency increment due to intel turbo boost. // CPU with different stepping and different core number have different turbo increment. // It is used internally here, and is not implemented on SPARC // YLM: one can use cputrack to estimate max turbo frequency // example: for a cpu-bound app that runs for > 10 seconds, count cycles for 10 seconds: // cputrack -T 10 -v -c cpu_clk_unhalted.thread_p a.out static int get_max_turbo_freq (int model) { switch (model) { // Nehalem case 30:// Core i7-870: 2/2/4/5 return 2 * 133333; case 26:// Xeon L5520: 1/1/1/2 return 2 * 133333; case 46:// Xeon E7540: 2 return 2 * 133333; // Westmere case 37:// Core i5-520M: 2/4 return 2 * 133333; case 44:// Xeon E5620: 1/1/2/2 return 2 * 133333; case 47:// Xeon E7-2820: 1/1/1/2 return 1 * 133333; // Sandy Bridge case 42:// Core i5-2500: 1/2/3/4 return 3 * 100000; // http://ark.intel.com/products/64584/Intel-Xeon-Processor-E5-2660-20M-Cache-2_20-GHz-8_00-GTs-Intel-QPI case 45:// Xeon E5-2660 GenuineIntel 206D7 family 6 model 45 step 7 clock 2200 MHz return 8 * 100000; // Ivy Bridge case 58:// Core i7-3770: 3/4/5/5 return 4 * 100000; case 62:// Xeon E5-2697: 3/3/3/3/3/3/3/4/5/6/7/8 return 7 * 100000; // Haswell case 60: return 789000; // empirically we see 3189 MHz - 2400 MHz case 63: return 1280000; // empirically we see 3580 MHz - 2300 MHz for single-threaded // return 500000; // empirically we see 2800 MHz - 2300 MHz for large throughput // Broadwell // where are these values listed? // maybe try https://en.wikipedia.org/wiki/Broadwell_%28microarchitecture%29#Server_processors case 61: return 400000; case 71: return 400000; case 79: return 950000; // empirically we see (3550-2600) MHz for single-threaded on x6-2a case 85: return 1600000; // X7: empirically see ~3.7GHz with single thread, baseline is 2.1Ghz Return 3,700,000-2,100,000 case 31: // Nehalem? case 28: // Atom case 69: // Haswell case 70: // Haswell case 78: // Skylake case 94: // Skylake default: return 0; } } #endif /* * parameter: mode, pointer to a 8bit mode indicator * return: max cpu frequency in MHz */ //YXXX Updating this function? Check similar cut/paste code in: // collctrl.cc::Coll_Ctrl() // collector.c::log_header_write() // cpu_frequency.h::get_cpu_frequency() static int get_cpu_frequency (uint8_t *mode) { int ret_freq = 0; if (mode != NULL) *mode = COL_CPUFREQ_NONE; FILE *procf = fopen ("/proc/cpuinfo", "r"); if (procf != NULL) { char temp[1024]; int cpu = -1; #if defined(__i386__) || defined(__x86_64) int model = -1; int family = -1; #endif while (fgets (temp, 1024, procf) != NULL) { if (strncmp (temp, "processor", strlen ("processor")) == 0) { char *val = strchr (temp, ':'); cpu = val ? atoi (val + 1) : -1; } #if defined(__i386__) || defined(__x86_64) else if (strncmp (temp, "model", strlen ("model")) == 0 && strstr (temp, "name") == 0) { char *val = strchr (temp, ':'); model = val ? atoi (val + 1) : -1; } else if (strncmp (temp, "cpu family", strlen ("cpu family")) == 0) { char *val = strchr (temp, ':'); family = val ? atoi (val + 1) : -1; } #endif else if (strncmp (temp, "cpu MHz", strlen ("cpu MHz")) == 0) { char *val = strchr (temp, ':'); int mhz = val ? atoi (val + 1) : 0; /* reading it as int is fine */ char scaling_freq_file[MAXSTRLEN + 1]; snprintf (scaling_freq_file, sizeof (scaling_freq_file), "/sys/devices/system/cpu/cpu%d/cpufreq/scaling_driver", cpu); int intel_pstate = 0; int no_turbo = 0; if (access (scaling_freq_file, R_OK) == 0) { FILE *cpufreqd = fopen (scaling_freq_file, "r"); if (cpufreqd != NULL) { if (fgets (temp, 1024, cpufreqd) != NULL && strncmp (temp, "intel_pstate", sizeof ("intel_pstate") - 1) == 0) intel_pstate = 1; fclose (cpufreqd); } } snprintf (scaling_freq_file, sizeof (scaling_freq_file), "/sys/devices/system/cpu/intel_pstate/no_turbo"); if (access (scaling_freq_file, R_OK) == 0) { FILE *pstatent = fopen (scaling_freq_file, "r"); if (pstatent != NULL) { if (fgets (temp, 1024, pstatent) != NULL) if (strncmp (temp, "1", sizeof ("1") - 1) == 0) no_turbo = 1; fclose (pstatent); } } snprintf (scaling_freq_file, sizeof (scaling_freq_file), "/sys/devices/system/cpu/cpu%d/cpufreq/scaling_governor", cpu); int frequency_scaling = 0; int turbo_mode = 0; if (access (scaling_freq_file, R_OK) == 0) { FILE *cpufreqf = fopen (scaling_freq_file, "r"); if (cpufreqf != NULL) { if (fgets (temp, 1024, cpufreqf) != NULL) { int ondemand = 0; if (strncmp (temp, "ondemand", sizeof ("ondemand") - 1) == 0) ondemand = 1; int performance = 0; if (strncmp (temp, "performance", sizeof ("performance") - 1) == 0) performance = 1; int powersave = 0; if (strncmp (temp, "powersave", sizeof ("powersave") - 1) == 0) powersave = 1; if (intel_pstate || ondemand || performance) { snprintf (scaling_freq_file, sizeof (scaling_freq_file), "/sys/devices/system/cpu/cpu%d/cpufreq/scaling_max_freq", cpu); if (access (scaling_freq_file, R_OK) == 0) { FILE * cpufreqf_max; if ((cpufreqf_max = fopen (scaling_freq_file, "r")) != NULL) { if (fgets (temp, 1024, cpufreqf_max) != NULL) { int tmpmhz = atoi (temp); snprintf (scaling_freq_file, sizeof (scaling_freq_file), "/sys/devices/system/cpu/cpu%d/cpufreq/scaling_available_frequencies", cpu); if (intel_pstate) { frequency_scaling = 1; turbo_mode = !no_turbo; if (powersave) // the system might have been relatively cold // so we might do better with scaling_max_freq mhz = (int) (((double) tmpmhz / 1000.0) + 0.5); } else if (access (scaling_freq_file, R_OK) == 0) { FILE * cpufreqf_ava; if ((cpufreqf_ava = fopen (scaling_freq_file, "r")) != NULL) { if (fgets (temp, 1024, cpufreqf_ava) != NULL) { if (strchr (temp, ' ') != strrchr (temp, ' ') && ondemand) frequency_scaling = 1; if (tmpmhz > 1000) { #if defined(__i386__) || defined(__x86_64) if (family == 6) { // test turbo mode char non_turbo_max_freq[1024]; snprintf (non_turbo_max_freq, sizeof (non_turbo_max_freq), "%d", tmpmhz - 1000); if (strstr (temp, non_turbo_max_freq)) { turbo_mode = 1; tmpmhz = (tmpmhz - 1000) + get_max_turbo_freq (model); } } #endif } } fclose (cpufreqf_ava); } mhz = (int) (((double) tmpmhz / 1000.0) + 0.5); } } fclose (cpufreqf_max); } } } } fclose (cpufreqf); } } if (mhz > ret_freq) ret_freq = mhz; if (frequency_scaling && mode != NULL) *mode |= COL_CPUFREQ_SCALING; if (turbo_mode && mode != NULL) *mode |= COL_CPUFREQ_TURBO; } else if (strncmp (temp, "Cpu", 3) == 0 && temp[3] != '\0' && strncmp (strchr (temp + 1, 'C') ? strchr (temp + 1, 'C') : (temp + 4), "ClkTck", 6) == 0) { // sparc-Linux char *val = strchr (temp, ':'); if (val) { unsigned long long freq; sscanf (val + 2, "%llx", &freq); int mhz = (unsigned int) (((double) freq) / 1000000.0 + 0.5); if (mhz > ret_freq) ret_freq = mhz; } } } fclose (procf); } return ret_freq; } #ifdef __cplusplus } #endif #endif /*_CPU_FREQUENCY_H*/