/* brig2tree.cc -- brig to gcc generic/gimple tree conversion Copyright (C) 2016-2020 Free Software Foundation, Inc. Contributed by Pekka Jaaskelainen for General Processor Tech. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include #include #include #include #include "config.h" #include "system.h" #include "coretypes.h" #include "target.h" #include "function.h" #include "brig-to-generic.h" #include "stringpool.h" #include "tree-iterator.h" #include "toplev.h" #include "gimplify.h" #include "gimple-expr.h" #include "print-tree.h" #include "hsa-brig-format.h" #include "stor-layout.h" #include "diagnostic-core.h" #include "brig-code-entry-handler.h" #include "brig-machine.h" #include "brig-util.h" #include "phsa.h" #include "tree-pretty-print.h" #include "dumpfile.h" #include "profile-count.h" #include "tree-cfg.h" #include "errors.h" #include "fold-const.h" #include "cgraph.h" #include "dumpfile.h" #include "tree-pretty-print.h" #include "attribs.h" extern int gccbrig_verbose; tree brig_to_generic::s_fp16_type; tree brig_to_generic::s_fp32_type; tree brig_to_generic::s_fp64_type; brig_to_generic::brig_to_generic () : m_cf (NULL), m_analyzing (true), m_total_group_segment_usage (0), m_brig (NULL), m_next_private_offset (0) { m_globals = NULL_TREE; /* Initialize the basic REAL types. This doesn't work straight away because most of the targets do not support fp16 natively. Let's by default convert to fp32 and back before and after each instruction (handle it as a storage format only), and later add an optimization pass that removes the extra converts (in case of multiple fp16 ops in a row). */ s_fp16_type = make_node (REAL_TYPE); TYPE_PRECISION (s_fp16_type) = 16; TYPE_SIZE (s_fp16_type) = bitsize_int (16); TYPE_SIZE_UNIT (s_fp16_type) = size_int (2); SET_TYPE_ALIGN (s_fp16_type, 16); layout_type (s_fp16_type); s_fp32_type = gccbrig_tree_type_for_hsa_type (BRIG_TYPE_F32); s_fp64_type = gccbrig_tree_type_for_hsa_type (BRIG_TYPE_F64); /* TODO: (machine)query the preferred rounding mode that is set by the machine by default. This can be redefined by each BRIG module header. */ m_default_float_rounding_mode = BRIG_ROUND_FLOAT_ZERO; m_dump_file = dump_begin (TDI_original, &m_dump_flags); } class unimplemented_entry_handler : public brig_code_entry_handler { public: unimplemented_entry_handler (brig_to_generic &parent) : brig_code_entry_handler (parent) { } size_t operator () (const BrigBase *base) { gcc_unreachable (); return base->byteCount; } }; /* Handler for entries that can be (and are) safely skipped for the purposes of GENERIC generation. */ class skipped_entry_handler : public brig_code_entry_handler { public: skipped_entry_handler (brig_to_generic &parent) : brig_code_entry_handler (parent) { } size_t operator () (const BrigBase *base) { return base->byteCount; } }; class brig_reg_use_analyzer : public brig_code_entry_handler { public: brig_reg_use_analyzer (brig_to_generic &parent) : brig_code_entry_handler (parent) { } size_t operator () (const BrigBase *base) { const BrigInstBase *brig_inst = (const BrigInstBase *) base; analyze_operands (*brig_inst); return base->byteCount; } }; /* Helper struct for pairing a BrigKind and a BrigCodeEntryHandler that should handle its data. */ struct code_entry_handler_info { BrigKind kind; brig_code_entry_handler *handler; }; /* Finds the BRIG file sections in the currently processed file. */ void brig_to_generic::find_brig_sections () { m_data = m_code = m_operand = NULL; const BrigModuleHeader *mheader = (const BrigModuleHeader *) m_brig; /* Find the positions of the different sections. */ for (uint32_t sec = 0; sec < mheader->sectionCount; ++sec) { uint64_t offset = ((const uint64_t *) (m_brig + mheader->sectionIndex))[sec]; const BrigSectionHeader *section_header = (const BrigSectionHeader *) (m_brig + offset); std::string name ((const char *) (§ion_header->name), section_header->nameLength); if (sec == BRIG_SECTION_INDEX_DATA && name == "hsa_data") { m_data = (const char *) section_header; m_data_size = section_header->byteCount; } else if (sec == BRIG_SECTION_INDEX_CODE && name == "hsa_code") { m_code = (const char *) section_header; m_code_size = section_header->byteCount; } else if (sec == BRIG_SECTION_INDEX_OPERAND && name == "hsa_operand") { m_operand = (const char *) section_header; m_operand_size = section_header->byteCount; } else { gcc_unreachable (); } } if (m_code == NULL) gcc_unreachable (); if (m_data == NULL) gcc_unreachable (); if (m_operand == NULL) gcc_unreachable (); } /* Does a first pass over the given BRIG to collect data needed for the actual parsing. Currently this includes only collecting the group segment variable usage to support the experimental HSA PRM feature where group variables can be declared also in module and function scope (in addition to kernel scope). */ void brig_to_generic::analyze (const char *brig_blob) { const BrigModuleHeader *mheader = (const BrigModuleHeader *) brig_blob; if (strncmp (mheader->identification, "HSA BRIG", 8) != 0) fatal_error (UNKNOWN_LOCATION, PHSA_ERROR_PREFIX_INCOMPATIBLE_MODULE "Unrecognized file format."); if (mheader->brigMajor != 1 || mheader->brigMinor != 0) fatal_error (UNKNOWN_LOCATION, PHSA_ERROR_PREFIX_INCOMPATIBLE_MODULE "BRIG version not supported. BRIG 1.0 required."); m_brig = brig_blob; find_brig_sections (); brig_directive_variable_handler var_handler (*this); brig_directive_fbarrier_handler fbar_handler (*this); brig_directive_function_handler func_handler (*this); brig_reg_use_analyzer reg_use_analyzer (*this); /* Need this for grabbing the module names for mangling the group variable names. */ brig_directive_module_handler module_handler (*this); skipped_entry_handler skipped_handler (*this); const BrigSectionHeader *csection_header = (const BrigSectionHeader *) m_code; code_entry_handler_info handlers[] = {{BRIG_KIND_INST_BASIC, ®_use_analyzer}, {BRIG_KIND_INST_MOD, ®_use_analyzer}, {BRIG_KIND_INST_CMP, ®_use_analyzer}, {BRIG_KIND_INST_MEM, ®_use_analyzer}, {BRIG_KIND_INST_CVT, ®_use_analyzer}, {BRIG_KIND_INST_SEG_CVT, ®_use_analyzer}, {BRIG_KIND_INST_SEG, ®_use_analyzer}, {BRIG_KIND_INST_ADDR, ®_use_analyzer}, {BRIG_KIND_INST_SOURCE_TYPE, ®_use_analyzer}, {BRIG_KIND_INST_ATOMIC, ®_use_analyzer}, {BRIG_KIND_INST_SIGNAL, ®_use_analyzer}, {BRIG_KIND_INST_BR, ®_use_analyzer}, {BRIG_KIND_INST_LANE, ®_use_analyzer}, {BRIG_KIND_INST_QUEUE, ®_use_analyzer}, {BRIG_KIND_DIRECTIVE_VARIABLE, &var_handler}, {BRIG_KIND_DIRECTIVE_FBARRIER, &fbar_handler}, {BRIG_KIND_DIRECTIVE_KERNEL, &func_handler}, {BRIG_KIND_DIRECTIVE_MODULE, &module_handler}, {BRIG_KIND_DIRECTIVE_FUNCTION, &func_handler}}; m_analyzing = true; for (size_t b = csection_header->headerByteCount; b < m_code_size;) { const BrigBase *entry = (const BrigBase *) (m_code + b); brig_code_entry_handler *handler = &skipped_handler; if (m_cf != NULL && b >= m_cf->m_brig_def->nextModuleEntry) { /* The function definition ended. We can just discard the place holder function. */ m_total_group_segment_usage += m_cf->m_local_group_variables.size (); delete m_cf; m_cf = NULL; } /* Find a handler. */ for (size_t i = 0; i < sizeof (handlers) / sizeof (code_entry_handler_info); ++i) { if (handlers[i].kind == entry->kind) handler = handlers[i].handler; } int bytes_processed = (*handler) (entry); if (bytes_processed == 0) fatal_error (UNKNOWN_LOCATION, PHSA_ERROR_PREFIX_CORRUPTED_MODULE "Element with 0 bytes."); b += bytes_processed; } if (m_cf != NULL) { m_total_group_segment_usage += m_cf->m_local_group_variables.size (); delete m_cf; m_cf = NULL; } m_total_group_segment_usage += m_module_group_variables.size (); m_analyzing = false; } /* Parses the given BRIG blob. */ void brig_to_generic::parse (const char *brig_blob) { m_brig = brig_blob; find_brig_sections (); brig_basic_inst_handler inst_handler (*this); brig_branch_inst_handler branch_inst_handler (*this); brig_cvt_inst_handler cvt_inst_handler (*this); brig_seg_inst_handler seg_inst_handler (*this); brig_copy_move_inst_handler copy_move_inst_handler (*this); brig_signal_inst_handler signal_inst_handler (*this); brig_atomic_inst_handler atomic_inst_handler (*this); brig_cmp_inst_handler cmp_inst_handler (*this); brig_mem_inst_handler mem_inst_handler (*this); brig_inst_mod_handler inst_mod_handler (*this); brig_directive_label_handler label_handler (*this); brig_directive_variable_handler var_handler (*this); brig_directive_fbarrier_handler fbar_handler (*this); brig_directive_comment_handler comment_handler (*this); brig_directive_function_handler func_handler (*this); brig_directive_control_handler control_handler (*this); brig_directive_arg_block_handler arg_block_handler (*this); brig_directive_module_handler module_handler (*this); brig_lane_inst_handler lane_inst_handler (*this); brig_queue_inst_handler queue_inst_handler (*this); skipped_entry_handler skipped_handler (*this); unimplemented_entry_handler unimplemented_handler (*this); struct code_entry_handler_info { BrigKind kind; brig_code_entry_handler *handler; }; /* TODO: Convert to a hash table / map. For now, put the more common entries to the top to keep the scan fast on average. */ code_entry_handler_info handlers[] = {{BRIG_KIND_INST_BASIC, &inst_handler}, {BRIG_KIND_INST_CMP, &cmp_inst_handler}, {BRIG_KIND_INST_MEM, &mem_inst_handler}, {BRIG_KIND_INST_MOD, &inst_mod_handler}, {BRIG_KIND_INST_CVT, &cvt_inst_handler}, {BRIG_KIND_INST_SEG_CVT, &seg_inst_handler}, {BRIG_KIND_INST_SEG, &seg_inst_handler}, {BRIG_KIND_INST_ADDR, ©_move_inst_handler}, {BRIG_KIND_INST_SOURCE_TYPE, ©_move_inst_handler}, {BRIG_KIND_INST_ATOMIC, &atomic_inst_handler}, {BRIG_KIND_INST_SIGNAL, &signal_inst_handler}, {BRIG_KIND_INST_BR, &branch_inst_handler}, {BRIG_KIND_INST_LANE, &lane_inst_handler}, {BRIG_KIND_INST_QUEUE, &queue_inst_handler}, /* Assuming fences are not needed. FIXME: call builtins when porting to a platform where they are. */ {BRIG_KIND_INST_MEM_FENCE, &skipped_handler}, {BRIG_KIND_DIRECTIVE_LABEL, &label_handler}, {BRIG_KIND_DIRECTIVE_VARIABLE, &var_handler}, {BRIG_KIND_DIRECTIVE_ARG_BLOCK_START, &arg_block_handler}, {BRIG_KIND_DIRECTIVE_ARG_BLOCK_END, &arg_block_handler}, {BRIG_KIND_DIRECTIVE_FBARRIER, &fbar_handler}, {BRIG_KIND_DIRECTIVE_COMMENT, &comment_handler}, {BRIG_KIND_DIRECTIVE_KERNEL, &func_handler}, {BRIG_KIND_DIRECTIVE_SIGNATURE, &func_handler}, {BRIG_KIND_DIRECTIVE_FUNCTION, &func_handler}, {BRIG_KIND_DIRECTIVE_INDIRECT_FUNCTION, &func_handler}, {BRIG_KIND_DIRECTIVE_MODULE, &module_handler}, /* Skipping debug locations for now as not needed for conformance. */ {BRIG_KIND_DIRECTIVE_LOC, &skipped_handler}, /* There are no supported pragmas at this moment. */ {BRIG_KIND_DIRECTIVE_PRAGMA, &skipped_handler}, {BRIG_KIND_DIRECTIVE_CONTROL, &control_handler}, {BRIG_KIND_DIRECTIVE_EXTENSION, &skipped_handler}, /* BRIG_KIND_NONE entries are valid anywhere. They can be used for patching BRIGs before finalization. */ {BRIG_KIND_NONE, &skipped_handler}}; const BrigSectionHeader *csection_header = (const BrigSectionHeader *) m_code; for (size_t b = csection_header->headerByteCount; b < m_code_size;) { const BrigBase *entry = (const BrigBase *) (m_code + b); brig_code_entry_handler *handler = &unimplemented_handler; if (m_cf != NULL && b >= m_cf->m_brig_def->nextModuleEntry) finish_function (); /* The function definition ended. */ /* Find a handler. */ for (size_t i = 0; i < sizeof (handlers) / sizeof (code_entry_handler_info); ++i) { if (handlers[i].kind == entry->kind) handler = handlers[i].handler; } b += (*handler) (entry); } finish_function (); } const BrigData * brig_to_generic::get_brig_data_entry (size_t entry_offset) const { return (const BrigData *) (m_data + entry_offset); } const BrigBase * brig_to_generic::get_brig_operand_entry (size_t entry_offset) const { return (const BrigBase *) (m_operand + entry_offset); } const BrigBase * brig_to_generic::get_brig_code_entry (size_t entry_offset) const { return (const BrigBase *) (m_code + entry_offset); } void brig_to_generic::append_global (tree g) { if (m_globals == NULL_TREE) { m_globals = g; return; } else { tree last = tree_last (m_globals); TREE_CHAIN (last) = g; } } tree brig_to_generic::global_variable (const std::string &name) const { label_index::const_iterator i = m_global_variables.find (name); if (i == m_global_variables.end ()) return NULL_TREE; else return (*i).second; } /* Returns a function declaration with the given name. Assumes it has been created previously via a DirectiveFunction or similar. */ tree brig_to_generic::function_decl (const std::string &name) { label_index::const_iterator i = m_function_index.find (name); if (i == m_function_index.end ()) return NULL_TREE; return (*i).second; } void brig_to_generic::add_function_decl (const std::string &name, tree func_decl) { m_function_index[name] = func_decl; } /* Adds a GENERIC global variable VAR_DECL with the given NAME to the current module. If we have generated a host def var ptr (a place holder for variables that are defined by the HSA host code) for this global variable definition (because there was a declaration earlier which looked like it might have been a host defined variable), we now have to assign its address and make it private to allow the references to point to the defined variable instead. */ void brig_to_generic::add_global_variable (const std::string &name, tree var_decl) { append_global (var_decl); m_global_variables[name] = var_decl; std::string host_def_var_name = std::string (PHSA_HOST_DEF_PTR_PREFIX) + name; tree host_def_var = global_variable (host_def_var_name); if (host_def_var == NULL_TREE) return; tree ptype = build_pointer_type (TREE_TYPE (var_decl)); tree var_addr = build1 (ADDR_EXPR, ptype, var_decl); DECL_INITIAL (host_def_var) = var_addr; TREE_PUBLIC (host_def_var) = 1; set_externally_visible (host_def_var); } /* Adds an indirection pointer for a potential host-defined program scope variable declaration. */ void brig_to_generic::add_host_def_var_ptr (const std::string &name, tree var_decl) { std::string var_name = std::string (PHSA_HOST_DEF_PTR_PREFIX) + name; tree name_identifier = get_identifier (var_name.c_str ()); tree ptr_var = build_decl (UNKNOWN_LOCATION, VAR_DECL, name_identifier, build_pointer_type (TREE_TYPE (var_decl))); DECL_EXTERNAL (ptr_var) = 0; DECL_ARTIFICIAL (ptr_var) = 0; TREE_PUBLIC (ptr_var) = 1; TREE_USED (ptr_var) = 1; TREE_ADDRESSABLE (ptr_var) = 1; TREE_STATIC (ptr_var) = 1; set_externally_visible (ptr_var); append_global (ptr_var); m_global_variables[var_name] = ptr_var; } void brig_to_generic::add_decl_call (tree call) { m_decl_call.push_back (call); } /* Produce a "mangled name" for the given brig function or kernel. The mangling is used to make unique global symbol name in case of module scope functions. Program scope functions are not mangled (except for dropping the leading &), which makes the functions directly visible for linking using the original function name. */ std::string brig_to_generic::get_mangled_name (const BrigDirectiveExecutable *func) const { /* Strip the leading &. */ std::string func_name = get_string (func->name).substr (1); if (func->linkage == BRIG_LINKAGE_MODULE) { /* Mangle the module scope function names with the module name and make them public so they can be queried by the HSA runtime from the produced binary. Assume it's the currently processed function we are always referring to. */ func_name = "gccbrig." + m_module_name + "." + func_name; } return func_name; } std::string brig_to_generic::get_string (size_t entry_offset) const { const BrigData *data_item = get_brig_data_entry (entry_offset); return std::string ((const char *) &data_item->bytes, data_item->byteCount); } /* Adapted from c-semantics.c. */ tree build_stmt (enum tree_code code, ...) { tree ret; int length, i; va_list p; bool side_effects; /* This function cannot be used to construct variably-sized nodes. */ gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp); va_start (p, code); ret = make_node (code); TREE_TYPE (ret) = void_type_node; length = TREE_CODE_LENGTH (code); /* TREE_SIDE_EFFECTS will already be set for statements with implicit side effects. Here we make sure it is set for other expressions by checking whether the parameters have side effects. */ side_effects = false; for (i = 0; i < length; i++) { tree t = va_arg (p, tree); if (t && !TYPE_P (t)) side_effects |= TREE_SIDE_EFFECTS (t); TREE_OPERAND (ret, i) = t; } TREE_SIDE_EFFECTS (ret) |= side_effects; va_end (p); return ret; } /* BRIG regs are untyped, but GENERIC is not. We need to add implicit casts in case treating the operand with an instruction with a type different than the created reg var type in order to select correct instruction type later on. This function creates the necessary reinterpret type cast from a source variable to the destination type. In case no cast is needed to the same type, SOURCE is returned directly. In case of mismatched type sizes, casting: - to narrower type the upper bits are clipped and - to wider type the source value is zero extended. */ tree build_resize_convert_view (tree destination_type, tree source) { gcc_assert (source && destination_type && TREE_TYPE (source) != NULL_TREE && destination_type != NULL_TREE); tree source_type = TREE_TYPE (source); if (TREE_CODE (source) == CALL_EXPR) { tree func_decl = TREE_OPERAND (TREE_OPERAND (source, 1), 0); source_type = TREE_TYPE (TREE_TYPE (func_decl)); } if (destination_type == source_type) return source; size_t src_size = int_size_in_bytes (source_type); size_t dst_size = int_size_in_bytes (destination_type); if (src_size == dst_size) return build1 (VIEW_CONVERT_EXPR, destination_type, source); else /* src_size != dst_size */ { /* The src_size can be smaller at least with f16 scalars which are stored to 32b register variables. First convert to an equivalent size unsigned type, then extend to an unsigned type of the target width, after which VIEW_CONVERT_EXPR can be used to force to the target type. */ tree resized = convert (get_scalar_unsigned_int_type (destination_type), build_reinterpret_to_uint (source)); gcc_assert ((size_t)int_size_in_bytes (TREE_TYPE (resized)) == dst_size); return build_resize_convert_view (destination_type, resized); } } /* Reinterprets SOURCE as a scalar unsigned int with the size corresponding to the orignal. */ tree build_reinterpret_to_uint (tree source) { tree src_type = TREE_TYPE (source); if (INTEGRAL_TYPE_P (src_type) && TYPE_UNSIGNED (src_type)) return source; tree dest_type = get_scalar_unsigned_int_type (src_type); return build1 (VIEW_CONVERT_EXPR, dest_type, source); } /* Returns the finished brig_function for the given generic FUNC_DECL, or NULL, if not found. */ brig_function * brig_to_generic::get_finished_function (tree func_decl) { std::string func_name = identifier_to_locale (IDENTIFIER_POINTER (DECL_NAME (func_decl))); std::map::iterator i = m_finished_functions.find (func_name); if (i != m_finished_functions.end ()) return (*i).second; else return NULL; } /* Adds a group variable to a correct book keeping structure depending on its segment. */ void brig_to_generic::add_group_variable (const std::string &name, size_t size, size_t alignment, bool function_scope) { /* Module and function scope group region variables are an experimental feature. We implement module scope group variables with a separate book keeping inside brig_to_generic which is populated in the 'analyze()' prepass. This is to ensure we know the group segment offsets when processing the functions that might refer to them. */ if (!function_scope) { if (!m_module_group_variables.has_variable (name)) m_module_group_variables.add (name, size, alignment); return; } if (!m_cf->m_local_group_variables.has_variable (name)) m_cf->m_local_group_variables.add (name, size, alignment); } /* Finalizes the currently handled function. Should be called before setting a new function. */ void brig_to_generic::finish_function () { if (m_cf == NULL || m_cf->m_func_decl == NULL_TREE) { /* It can be a finished func declaration fingerprint, in that case we don't have m_func_decl. */ m_cf = NULL; return; } if (!m_cf->m_is_kernel) { tree bind_expr = m_cf->m_current_bind_expr; tree stmts = BIND_EXPR_BODY (bind_expr); m_cf->finish (); m_cf->emit_metadata (stmts); dump_function (m_dump_file, m_cf); } else /* Emit the kernel only at the very end so we can analyze the total group and private memory usage. */ m_kernels.push_back (m_cf); pop_cfun (); m_finished_functions[m_cf->m_name] = m_cf; m_cf = NULL; } /* Initializes a new currently handled function. */ void brig_to_generic::start_function (tree f) { if (DECL_STRUCT_FUNCTION (f) == NULL) push_struct_function (f); else push_cfun (DECL_STRUCT_FUNCTION (f)); m_cf->m_func_decl = f; } /* Appends a new variable to the current kernel's private segment. */ void brig_to_generic::append_private_variable (const std::string &name, size_t size, size_t alignment) { /* We need to take care of two cases of alignment with private variables because of the layout where the same variable for each work-item is laid out in successive addresses. 1) Ensure the first work-item's variable is in an aligned offset: */ size_t align_padding = m_next_private_offset % alignment == 0 ? 0 : (alignment - m_next_private_offset % alignment); /* 2) Each successive per-work-item copy should be aligned. If the variable has wider alignment than size then we need to add extra padding to ensure it. The padding must be included in the size to allow per-work-item offset computation to find their own aligned copy. */ size_t per_var_padding = size % alignment == 0 ? 0 : (alignment - size % alignment); m_private_data_sizes[name] = size + per_var_padding; m_next_private_offset += align_padding; m_private_offsets[name] = m_next_private_offset; m_next_private_offset += size + per_var_padding; } size_t brig_to_generic::private_variable_segment_offset (const std::string &name) const { var_offset_table::const_iterator i = m_private_offsets.find (name); gcc_assert (i != m_private_offsets.end ()); return (*i).second; } bool brig_to_generic::has_private_variable (const std::string &name) const { std::map::const_iterator i = m_private_data_sizes.find (name); return i != m_private_data_sizes.end (); } size_t brig_to_generic::private_variable_size (const std::string &name) const { std::map::const_iterator i = m_private_data_sizes.find (name); gcc_assert (i != m_private_data_sizes.end ()); return (*i).second; } /* The size of private segment required by a single work-item executing the currently processed kernel. */ size_t brig_to_generic::private_segment_size () const { return m_next_private_offset; } /* Cached builtins indexed by name. */ typedef std::map builtin_index; builtin_index builtin_cache_; /* Build a call to a builtin function. PDECL is the builtin function to call. NARGS is the number of input arguments, RETTYPE the built-in functions return value type, and ... is the list of arguments passed to the call with type first, then the value. */ tree call_builtin (tree pdecl, int nargs, tree rettype, ...) { if (rettype == error_mark_node) return error_mark_node; tree *types = new tree[nargs]; tree *args = new tree[nargs]; va_list ap; va_start (ap, rettype); for (int i = 0; i < nargs; ++i) { types[i] = va_arg (ap, tree); tree arg = va_arg (ap, tree); args[i] = build_resize_convert_view (types[i], arg); if (types[i] == error_mark_node || args[i] == error_mark_node) { delete[] types; delete[] args; va_end (ap); return error_mark_node; } } va_end (ap); tree fnptr = build_fold_addr_expr (pdecl); tree ret = build_call_array (rettype, fnptr, nargs, args); delete[] types; delete[] args; return ret; } /* Generate all global declarations. Should be called after the last BRIG has been fed in. */ void brig_to_generic::write_globals () { /* Replace calls to declarations with calls to definitions. Otherwise inlining will fail to find the definition to inline from. */ for (size_t i = 0; i < m_decl_call.size(); ++i) { tree decl_call = m_decl_call.at(i); tree func_decl = get_callee_fndecl (decl_call); brig_function *brig_function = get_finished_function (func_decl); if (brig_function && brig_function->m_func_decl && DECL_EXTERNAL (brig_function->m_func_decl) == 0 && brig_function->m_func_decl != func_decl) { decl_call = CALL_EXPR_FN (decl_call); STRIP_NOPS (decl_call); if (TREE_CODE (decl_call) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (decl_call, 0)) == FUNCTION_DECL) TREE_OPERAND (decl_call, 0) = brig_function->m_func_decl; } } for (std::map::iterator i = m_finished_functions.begin(), e = m_finished_functions.end(); i != e; ++i) { brig_function *brig_f = (*i).second; if (brig_f->m_is_kernel) continue; /* Finalize only at this point to allow the cgraph analysis to see definitions to calls to later functions. */ gimplify_function_tree (brig_f->m_func_decl); cgraph_node::finalize_function (brig_f->m_func_decl, true); } /* Now that the whole BRIG module has been processed, build a launcher and a metadata section for each built kernel. */ for (size_t i = 0; i < m_kernels.size (); ++i) { brig_function *f = m_kernels[i]; /* Finish kernels now that we know the call graphs and their barrier usage. */ f->finish_kernel (); dump_function (m_dump_file, f); gimplify_function_tree (f->m_func_decl); cgraph_node::finalize_function (f->m_func_decl, true); f->m_descriptor.is_kernel = 1; /* TODO: analyze the kernel's actual private and group segment usage using call graph. Now the mem size is overly pessimistic in case of multiple kernels in the same module. */ f->m_descriptor.group_segment_size = m_total_group_segment_usage; f->m_descriptor.private_segment_size = private_segment_size (); /* The kernarg size is rounded up to a multiple of 16 according to the PRM specs. */ f->m_descriptor.kernarg_segment_size = f->m_next_kernarg_offset; if (f->m_descriptor.kernarg_segment_size % 16 > 0) f->m_descriptor.kernarg_segment_size += 16 - f->m_next_kernarg_offset % 16; f->m_descriptor.kernarg_max_align = f->m_kernarg_max_align; tree launcher = f->emit_launcher_and_metadata (); append_global (launcher); if (m_dump_file) { std::string kern_name = f->m_name.substr (1); fprintf (m_dump_file, "\n;; Function %s", kern_name.c_str()); fprintf (m_dump_file, "\n;; enabled by -%s\n\n", dump_flag_name (TDI_original)); print_generic_decl (m_dump_file, launcher, TDF_NONE); print_generic_expr (m_dump_file, DECL_SAVED_TREE (launcher), TDF_NONE); fprintf (m_dump_file, "\n"); } gimplify_function_tree (launcher); cgraph_node::finalize_function (launcher, true); pop_cfun (); } int no_globals = list_length (m_globals); tree *vec = new tree[no_globals]; int i = 0; tree global = m_globals; while (global) { vec[i] = global; ++i; global = TREE_CHAIN (global); } wrapup_global_declarations (vec, no_globals); delete[] vec; } /* Returns an type with unsigned int elements corresponding to the size and element count of ORIGINAL_TYPE. */ tree get_unsigned_int_type (tree original_type) { if (VECTOR_TYPE_P (original_type)) { size_t esize = int_size_in_bytes (TREE_TYPE (original_type)) * BITS_PER_UNIT; poly_uint64 ecount = TYPE_VECTOR_SUBPARTS (original_type); return build_vector_type (build_nonstandard_integer_type (esize, true), ecount); } else return build_nonstandard_integer_type (int_size_in_bytes (original_type) * BITS_PER_UNIT, true); } /* Returns a type with unsigned int corresponding to the size ORIGINAL_TYPE. */ tree get_scalar_unsigned_int_type (tree original_type) { return build_nonstandard_integer_type (int_size_in_bytes (original_type) * BITS_PER_UNIT, true); } /* Set the declaration externally visible so it won't get removed by whole program optimizations. */ void set_externally_visible (tree decl) { if (!lookup_attribute ("externally_visible", DECL_ATTRIBUTES (decl))) DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("externally_visible"), NULL, DECL_ATTRIBUTES (decl)); } void set_inline (tree decl) { if (!lookup_attribute ("inline", DECL_ATTRIBUTES (decl))) DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("inline"), NULL, DECL_ATTRIBUTES (decl)); } void dump_function (FILE *dump_file, brig_function *f) { /* Dump the BRIG-specific tree IR. */ if (dump_file) { fprintf (dump_file, "\n;; Function %s", f->m_name.c_str ()); fprintf (dump_file, "\n;; enabled by -%s\n\n", dump_flag_name (TDI_original)); print_generic_decl (dump_file, f->m_func_decl, TDF_NONE); print_generic_expr (dump_file, f->m_current_bind_expr, TDF_NONE); fprintf (dump_file, "\n"); } } /* Records use of the BRIG_REG as a TYPE in the current function. */ void brig_to_generic::add_reg_used_as_type (const BrigOperandRegister &brig_reg, tree type) { gcc_assert (m_cf); reg_use_info &info = m_fn_regs_use_index[m_cf->m_name][gccbrig_hsa_reg_id (brig_reg)]; if (info.m_type_refs_lookup.count (type)) info.m_type_refs[info.m_type_refs_lookup[type]].second++; else { info.m_type_refs.push_back (std::make_pair (type, 1)); info.m_type_refs_lookup[type] = info.m_type_refs.size () - 1; } }