/* * Copyright 2011,2015 Sven Verdoolaege. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY SVEN VERDOOLAEGE ''AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SVEN VERDOOLAEGE OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation * are those of the authors and should not be interpreted as * representing official policies, either expressed or implied, of * Sven Verdoolaege. */ #include "isl_config.h" #include #include #include #include #include #include #include "python.h" #include "generator.h" /* Argument format for Python methods with a fixed number of arguments. */ static const char *fixed_arg_fmt = "arg%d"; /* Argument format for Python methods with a variable number of arguments. */ static const char *var_arg_fmt = "args[%d]"; /* Drop the "isl_" initial part of the type name "name". */ static string type2python(string name) { return name.substr(4); } /* Print the arguments of a method with "n_arg" arguments, starting at "first". */ void python_generator::print_method_arguments(int first, int n_arg) { for (int i = first; i < n_arg; ++i) { if (i > first) printf(", "); printf("arg%d", i); } } /* Print the start of a definition for method "name" * (without specifying the arguments). * If "is_static" is set, then mark the python method as static. * * If the method is called "from", then rename it to "convert_from" * because "from" is a python keyword. */ static void print_method_def(bool is_static, const string &name) { const char *s; if (is_static) printf(" @staticmethod\n"); s = name.c_str(); if (name == "from") s = "convert_from"; printf(" def %s", s); } /* Print the header of the method "name" with "n_arg" arguments. * If "is_static" is set, then mark the python method as static. */ void python_generator::print_method_header(bool is_static, const string &name, int n_arg) { print_method_def(is_static, name); printf("("); print_method_arguments(0, n_arg); printf("):\n"); } /* Print formatted output with the given indentation. */ static void print_indent(int indent, const char *format, ...) { va_list args; printf("%*s", indent, " "); va_start(args, format); vprintf(format, args); va_end(args); } /* Print a check that the argument in position "pos" is of type "type" * with the given indentation. * If this fails and if "upcast" is set, then convert the first * argument to "super" and call the method "name" on it, passing * the remaining of the "n" arguments. * If the check fails and "upcast" is not set, then simply raise * an exception. * If "upcast" is not set, then the "super", "name" and "n" arguments * to this function are ignored. * "fmt" is the format for printing Python method arguments. */ void python_generator::print_type_check(int indent, const string &type, const char *fmt, int pos, bool upcast, const string &super, const string &name, int n) { print_indent(indent, "try:\n"); print_indent(indent, " if not "); printf(fmt, pos); printf(".__class__ is %s:\n", type.c_str()); print_indent(indent, " "); printf(fmt, pos); printf(" = %s(", type.c_str()); printf(fmt, pos); printf(")\n"); print_indent(indent, "except:\n"); if (upcast) { print_indent(indent, " return %s(", type2python(super).c_str()); printf(fmt, 0); printf(").%s(", name.c_str()); for (int i = 1; i < n; ++i) { if (i != 1) printf(", "); printf(fmt, i); } printf(")\n"); } else print_indent(indent, " raise\n"); } /* For each of the "n" initial arguments of the function "method" * that refer to an isl structure, * including the object on which the method is called, * check if the corresponding actual argument is of the right type. * If not, try and convert it to the right type. * If that doesn't work and if "super" contains at least one element, * try and convert self to the type of the first superclass in "super" and * call the corresponding method. * If "first_is_ctx" is set, then the first argument is skipped. */ void python_generator::print_type_checks(const string &cname, FunctionDecl *method, bool first_is_ctx, int n, const vector &super) { for (int i = first_is_ctx; i < n; ++i) { ParmVarDecl *param = method->getParamDecl(i); string type; if (!is_isl_type(param->getOriginalType())) continue; type = type2python(extract_type(param->getOriginalType())); if (!first_is_ctx && i > 0 && super.size() > 0) print_type_check(8, type, fixed_arg_fmt, i - first_is_ctx, true, super[0], cname, n); else print_type_check(8, type, fixed_arg_fmt, i - first_is_ctx, false, "", cname, -1); } } /* Print a call to the *_copy function corresponding to "type". */ void python_generator::print_copy(QualType type) { string type_s = extract_type(type); printf("isl.%s_copy", type_s.c_str()); } /* Construct a wrapper for callback argument "param" (at position "arg"). * Assign the wrapper to "cb{arg}". * * The wrapper converts the arguments of the callback to python types, * taking a copy if the C callback does not take its arguments. * If any exception is thrown, the wrapper keeps track of it in exc_info[0] * and returns a value indicating an error. Otherwise the wrapper * returns a value indicating success. * In case the C callback is expected to return an isl_stat, * the error value is -1 and the success value is 0. * In case the C callback is expected to return an isl_bool, * the error value is -1 and the success value is 1 or 0 depending * on the result of the Python callback. * Otherwise, None is returned to indicate an error and * a copy of the object in case of success. */ void python_generator::print_callback(ParmVarDecl *param, int arg) { QualType type = param->getOriginalType(); const FunctionProtoType *fn = extract_prototype(type); QualType return_type = fn->getReturnType(); unsigned n_arg = fn->getNumArgs(); printf(" exc_info = [None]\n"); printf(" fn = CFUNCTYPE("); if (is_isl_stat(return_type) || is_isl_bool(return_type)) printf("c_int"); else printf("c_void_p"); for (unsigned i = 0; i < n_arg - 1; ++i) { if (!is_isl_type(fn->getArgType(i))) die("Argument has non-isl type"); printf(", c_void_p"); } printf(", c_void_p)\n"); printf(" def cb_func("); for (unsigned i = 0; i < n_arg; ++i) { if (i) printf(", "); printf("cb_arg%d", i); } printf("):\n"); for (unsigned i = 0; i < n_arg - 1; ++i) { string arg_type; arg_type = type2python(extract_type(fn->getArgType(i))); printf(" cb_arg%d = %s(ctx=arg0.ctx, ptr=", i, arg_type.c_str()); if (!callback_takes_argument(param, i)) print_copy(fn->getArgType(i)); printf("(cb_arg%d))\n", i); } printf(" try:\n"); if (is_isl_stat(return_type)) printf(" arg%d(", arg); else printf(" res = arg%d(", arg); for (unsigned i = 0; i < n_arg - 1; ++i) { if (i) printf(", "); printf("cb_arg%d", i); } printf(")\n"); printf(" except BaseException as e:\n"); printf(" exc_info[0] = e\n"); if (is_isl_stat(return_type) || is_isl_bool(return_type)) printf(" return -1\n"); else printf(" return None\n"); if (is_isl_stat(return_type)) { printf(" return 0\n"); } else if (is_isl_bool(return_type)) { printf(" return 1 if res else 0\n"); } else { printf(" return "); print_copy(return_type); printf("(res.ptr)\n"); } printf(" cb%d = fn(cb_func)\n", arg); } /* Print the argument at position "arg" in call to "fd". * "fmt" is the format for printing Python method arguments. * "skip" is the number of initial arguments of "fd" that are * skipped in the Python method. * * If the (first) argument is an isl_ctx, then print "ctx", * assuming that the caller has made the context available * in a "ctx" variable. * Otherwise, if the argument is a callback, then print a reference to * the corresponding callback wrapper. * Otherwise, if the argument is marked as consuming a reference, * then pass a copy of the pointer stored in the corresponding * argument passed to the Python method. * Otherwise, if the argument is a string, then the python string is first * encoded as a byte sequence, using 'ascii' as encoding. This assumes * that all strings passed to isl can be converted to 'ascii'. * Otherwise, if the argument is a pointer, then pass this pointer itself. * Otherwise, pass the argument directly. */ void python_generator::print_arg_in_call(FunctionDecl *fd, const char *fmt, int arg, int skip) { ParmVarDecl *param = fd->getParamDecl(arg); QualType type = param->getOriginalType(); if (is_isl_ctx(type)) { printf("ctx"); } else if (is_callback(type)) { printf("cb%d", arg - skip); } else if (takes(param)) { print_copy(type); printf("("); printf(fmt, arg - skip); printf(".ptr)"); } else if (is_string(type)) { printf(fmt, arg - skip); printf(".encode('ascii')"); } else if (type->isPointerType()) { printf(fmt, arg - skip); printf(".ptr"); } else { printf(fmt, arg - skip); } } /* Generate code that raises the exception captured in "exc_info", if any, * with the given indentation. */ static void print_rethrow(int indent, const char *exc_info) { print_indent(indent, "if %s is not None:\n", exc_info); print_indent(indent, " raise %s\n", exc_info); } /* Print code with the given indentation that checks * whether any of the persistent callbacks of "clazz" * is set and if it failed with an exception. If so, the 'exc_info' * field contains the exception and is raised again. * The field is cleared because the callback and its data may get reused. * "fmt" is the format for printing Python method arguments. */ static void print_persistent_callback_failure_check(int indent, const isl_class &clazz, const char *fmt) { const set &callbacks = clazz.persistent_callbacks; set::const_iterator in; for (in = callbacks.begin(); in != callbacks.end(); ++in) { string callback_name = clazz.persistent_callback_name(*in); print_indent(indent, "if hasattr("); printf(fmt, 0); printf(", '%s') and ", callback_name.c_str()); printf(fmt, 0); printf(".%s['exc_info'] != None:\n", callback_name.c_str()); print_indent(indent, " exc_info = "); printf(fmt, 0); printf(".%s['exc_info'][0]\n", callback_name.c_str()); print_indent(indent, " "); printf(fmt, 0); printf(".%s['exc_info'][0] = None\n", callback_name.c_str()); print_rethrow(indent + 4, "exc_info"); } } /* Print the return statement of the python method corresponding * to the C function "method" with the given indentation. * If the object on which the method was called * may have a persistent callback, then first check if any of those failed. * "fmt" is the format for printing Python method arguments. * * If the method returns a new instance of the same object type and * if the class has any persistent callbacks, then the data * for these callbacks are copied from the original to the new object. * If the method it itself setting a persistent callback, * then keep track of the constructed C callback (such that it doesn't * get destroyed) and the data structure that holds the captured exception * (such that it can be raised again). * The callback appears in position 1 and the C callback is therefore * called "cb1". * * If the return type is a (const) char *, then convert the result * to a Python string, raising an error on NULL and freeing * the C string if needed. For python 3 compatibility, the string returned * by isl is explicitly decoded as an 'ascii' string. This is correct * as all strings returned by isl are expected to be 'ascii'. * * If the return type is isl_stat, isl_bool or isl_size, then * raise an error on isl_stat_error, isl_bool_error or isl_size_error. * In case of isl_bool, the result is converted to * a Python boolean. * In case of isl_size, the result is converted to a Python int. */ void python_generator::print_method_return(int indent, const isl_class &clazz, FunctionDecl *method, const char *fmt) { QualType return_type = method->getReturnType(); if (!is_static(clazz, method)) print_persistent_callback_failure_check(indent, clazz, fmt); if (is_isl_type(return_type)) { string type; type = type2python(extract_type(return_type)); print_indent(indent, "obj = %s(ctx=ctx, ptr=res)\n", type.c_str()); if (is_mutator(clazz, method) && clazz.has_persistent_callbacks()) print_indent(indent, "obj.copy_callbacks(arg0)\n"); if (clazz.persistent_callbacks.count(method)) { string callback_name; callback_name = clazz.persistent_callback_name(method); print_indent(indent, "obj.%s = { 'func': cb1, " "'exc_info': exc_info }\n", callback_name.c_str()); } print_indent(indent, "return obj\n"); } else if (is_string(return_type)) { print_indent(indent, "if res == 0:\n"); print_indent(indent, " raise Error\n"); print_indent(indent, "string = " "cast(res, c_char_p).value.decode('ascii')\n"); if (gives(method)) print_indent(indent, "libc.free(res)\n"); print_indent(indent, "return string\n"); } else if (is_isl_neg_error(return_type)) { print_indent(indent, "if res < 0:\n"); print_indent(indent, " raise Error\n"); if (is_isl_bool(return_type)) print_indent(indent, "return bool(res)\n"); else if (is_isl_size(return_type)) print_indent(indent, "return int(res)\n"); } else { print_indent(indent, "return res\n"); } } /* Print a python "get" method corresponding to the C function "fd" * in class "clazz" using a name that includes the "get_" prefix. * * This method simply calls the variant without the "get_" prefix and * returns its result. * Note that static methods are not considered to be "get" methods. */ void python_generator::print_get_method(const isl_class &clazz, FunctionDecl *fd) { string get_name = clazz.base_method_name(fd); string name = clazz.method_name(fd); int num_params = fd->getNumParams(); print_method_header(false, get_name, num_params); printf(" return arg0.%s(", name.c_str()); print_method_arguments(1, num_params); printf(")\n"); } /* Print a call to "method", along with the corresponding * return statement, with the given indentation. * "drop_ctx" is set if the first argument is an isl_ctx. * * A "ctx" variable is first initialized as it may be needed * in the first call to print_arg_in_call and in print_method_return. * * If the method has any callback function, then any exception * thrown in any callback also need to be rethrown. */ void python_generator::print_method_call(int indent, const isl_class &clazz, FunctionDecl *method, const char *fmt, int drop_ctx) { string fullname = method->getName().str(); int num_params = method->getNumParams(); int drop_user = 0; if (drop_ctx) { print_indent(indent, "ctx = Context.getDefaultInstance()\n"); } else { print_indent(indent, "ctx = "); printf(fmt, 0); printf(".ctx\n"); } print_indent(indent, "res = isl.%s(", fullname.c_str()); for (int i = 0; i < num_params; ++i) { if (i > 0) printf(", "); print_arg_in_call(method, fmt, i, drop_ctx + drop_user); if (!is_callback_arg(method, i)) continue; ++drop_user; ++i; printf(", None"); } printf(")\n"); if (drop_user > 0) print_rethrow(indent, "exc_info[0]"); print_method_return(indent, clazz, method, fmt); } /* Print a python method corresponding to the C function "method". * "super" contains the superclasses of the class to which the method belongs, * with the first element corresponding to the annotation that appears * closest to the annotated type. This superclass is the least * general extension of the annotated type in the linearization * of the class hierarchy. * * If the first argument of "method" is something other than an instance * of the class, then mark the python method as static. * If, moreover, this first argument is an isl_ctx, then remove * it from the arguments of the Python method. * * If the function has any callback arguments, then it also has corresponding * "user" arguments. Since Python has closures, there is no need for such * user arguments in the Python interface, so we simply drop them. * We also create a wrapper ("cb{arg}") for each callback. * * If the function consumes a reference, then we pass it a copy of * the actual argument. * * For methods that are identified as "get" methods, also * print a variant of the method using a name that includes * the "get_" prefix. */ void python_generator::print_method(const isl_class &clazz, FunctionDecl *method, vector super) { string cname = clazz.method_name(method); int num_params = method->getNumParams(); int drop_user = 0; int drop_ctx = first_arg_is_isl_ctx(method); for (int i = 1; i < num_params; ++i) { if (is_callback_arg(method, i)) drop_user += 1; } print_method_header(is_static(clazz, method), cname, num_params - drop_ctx - drop_user); print_type_checks(cname, method, drop_ctx, num_params, super); drop_user = 0; for (int i = 1; i < num_params; ++i) { ParmVarDecl *param = method->getParamDecl(i); QualType type = param->getOriginalType(); if (!is_callback(type)) continue; print_callback(param, i - drop_ctx - drop_user); drop_user += 1; } print_method_call(8, clazz, method, fixed_arg_fmt, drop_ctx); if (clazz.is_get_method(method)) print_get_method(clazz, method); } /* Print a condition that checks whether Python method argument "i" * corresponds to the C function argument type "type". */ static void print_argument_check(QualType type, int i) { if (generator::is_isl_type(type)) { string type_str; type_str = generator::extract_type(type); type_str = type2python(type_str); printf("args[%d].__class__ is %s", i, type_str.c_str()); } else if (type->isPointerType()) { printf("type(args[%d]) == str", i); } else { printf("type(args[%d]) == int", i); } } /* Is any element of "vector" set? */ static bool any(const std::vector &vector) { return std::find(vector.begin(), vector.end(), true) != vector.end(); } /* Print a test that checks whether the arguments passed * to the Python method correspond to the arguments * expected by "fd" and * check if the object on which the method is called, if any, * is of the right type. * "drop_ctx" is set if the first argument of "fd" is an isl_ctx, * which does not appear as an argument to the Python method. * * If an automatic conversion function is available for any * of the argument types, then also allow the argument * to be of the type as prescribed by the second input argument * of the conversion function. * The corresponding arguments are then converted to the expected types * if needed. * The object on which the method is called is also converted if needed. * The argument tuple first needs to be converted to a list * in order to be able to modify the entries. */ void python_generator::print_argument_checks(const isl_class &clazz, FunctionDecl *fd, int drop_ctx) { int num_params = fd->getNumParams(); bool is_static = generator::is_static(clazz, fd); int first = is_static ? drop_ctx : 1; std::vector convert(num_params); printf(" if len(args) == %d", num_params - drop_ctx); for (int i = first; i < num_params; ++i) { ParmVarDecl *param = fd->getParamDecl(i); QualType type = param->getOriginalType(); const Type *ptr = type.getTypePtr(); printf(" and "); if (conversions.count(ptr) == 0) { print_argument_check(type, i - drop_ctx); } else { QualType type2 = conversions.at(ptr)->getOriginalType(); convert[i] = true; printf("("); print_argument_check(type, i - drop_ctx); printf(" or "); print_argument_check(type2, i - drop_ctx); printf(")"); } } printf(":\n"); if (is_static && !any(convert)) return; print_indent(12, "args = list(args)\n"); first = is_static ? drop_ctx : 0; for (int i = first; i < num_params; ++i) { bool is_self = !is_static && i == 0; ParmVarDecl *param = fd->getParamDecl(i); string type; if (!is_self && !convert[i]) continue; type = type2python(extract_type(param->getOriginalType())); print_type_check(12, type, var_arg_fmt, i - drop_ctx, false, "", "", -1); } } /* Print part of an overloaded python method corresponding to the C function * "method". * "drop_ctx" is set if the first argument of "method" is an isl_ctx. * * In particular, print code to test whether the arguments passed to * the python method correspond to the arguments expected by "method" * and to call "method" if they do. */ void python_generator::print_method_overload(const isl_class &clazz, FunctionDecl *method) { int drop_ctx = first_arg_is_isl_ctx(method); print_argument_checks(clazz, method, drop_ctx); print_method_call(12, clazz, method, var_arg_fmt, drop_ctx); } /* Print a python method with a name derived from "fullname" * corresponding to the C functions "methods". * "super" contains the superclasses of the class to which the method belongs. * * If "methods" consists of a single element that is not marked overloaded, * the use print_method to print the method. * Otherwise, print an overloaded method with pieces corresponding * to each function in "methods". */ void python_generator::print_method(const isl_class &clazz, const string &fullname, const function_set &methods, vector super) { string cname; function_set::const_iterator it; FunctionDecl *any_method; any_method = *methods.begin(); if (methods.size() == 1 && !is_overload(any_method)) { print_method(clazz, any_method, super); return; } cname = clazz.method_name(any_method); print_method_def(is_static(clazz, any_method), cname); printf("(*args):\n"); for (it = methods.begin(); it != methods.end(); ++it) print_method_overload(clazz, *it); printf(" raise Error\n"); } /* Print a python method "name" corresponding to "fd" setting * the enum value "value". * "super" contains the superclasses of the class to which the method belongs, * with the first element corresponding to the annotation that appears * closest to the annotated type. * * The last argument of the C function does not appear in the method call, * but is fixed to "value" instead. * Other than that, the method printed here is similar to one * printed by python_generator::print_method, except that * some of the special cases do not occur. */ void python_generator::print_set_enum(const isl_class &clazz, FunctionDecl *fd, int value, const string &name, const vector &super) { string fullname = fd->getName().str(); int num_params = fd->getNumParams(); print_method_header(is_static(clazz, fd), name, num_params - 1); print_type_checks(name, fd, false, num_params - 1, super); printf(" ctx = arg0.ctx\n"); printf(" res = isl.%s(", fullname.c_str()); for (int i = 0; i < num_params - 1; ++i) { if (i) printf(", "); print_arg_in_call(fd, fixed_arg_fmt, i, 0); } printf(", %d", value); printf(")\n"); print_method_return(8, clazz, fd, fixed_arg_fmt); } /* Print python methods corresponding to "fd", which sets an enum. * "super" contains the superclasses of the class to which the method belongs, * with the first element corresponding to the annotation that appears * closest to the annotated type. * * A method is generated for each value in the enum, setting * the enum to that value. */ void python_generator::print_set_enum(const isl_class &clazz, FunctionDecl *fd, const vector &super) { vector::const_iterator it; const vector &set_enums = clazz.set_enums.at(fd); for (it = set_enums.begin(); it != set_enums.end(); ++it) print_set_enum(clazz, fd, it->value, it->method_name, super); } /* Print part of the constructor for this isl_class. * * In particular, check if the actual arguments correspond to the * formal arguments of "cons" and if so call "cons" and put the * result in self.ptr and a reference to the default context in self.ctx. */ void python_generator::print_constructor(const isl_class &clazz, FunctionDecl *cons) { string fullname = cons->getName().str(); string cname = clazz.method_name(cons); int num_params = cons->getNumParams(); int drop_ctx = first_arg_is_isl_ctx(cons); print_argument_checks(clazz, cons, drop_ctx); printf(" self.ctx = Context.getDefaultInstance()\n"); printf(" self.ptr = isl.%s(", fullname.c_str()); if (drop_ctx) printf("self.ctx"); for (int i = drop_ctx; i < num_params; ++i) { if (i) printf(", "); print_arg_in_call(cons, var_arg_fmt, i, drop_ctx); } printf(")\n"); printf(" return\n"); } /* The definition of the part of constructor for the "id" class * that construct an object from a name and a user object, * without the initial newline. * * Just like the parts generated by python_generator::print_constructor, * the result of the isl_id_alloc call is stored in self.ptr and * a reference to the default context is stored in self.ctx. * Also, just like any other constructor or method with a string argument, * the python string is first encoded as a byte sequence, * using 'ascii' as encoding. * * Since the isl_id keeps a reference to the Python user object, * the reference count of the Python object needs to be incremented, * but only if the construction of the isl_id is successful. * The reference count of the Python object is decremented again * by Context.free_user when the reference count of the isl_id * drops to zero. */ static const char *const id_constructor_user = &R"( if len(args) == 2 and type(args[0]) == str: self.ctx = Context.getDefaultInstance() name = args[0].encode('ascii') self.ptr = isl.isl_id_alloc(self.ctx, name, args[1]) self.ptr = isl.isl_id_set_free_user(self.ptr, Context.free_user) if self.ptr is not None: pythonapi.Py_IncRef(py_object(args[1])) return )"[1]; /* Print any special constructor parts of this class that are not * automatically derived from the C interface. * * In particular, print a special constructor part for the "id" class. */ void python_generator::print_special_constructors(const isl_class &clazz) { if (clazz.name != "isl_id") return; printf("%s", id_constructor_user); } /* The definition of an "id" method * for retrieving the user object associated to the identifier, * without the initial newline. * * The isl_id needs to have been created by the constructor * in id_constructor_user. That is, it needs to have a user pointer and * it needs to have its free_user callback set to Context.free_user. * The functions need to be cast to c_void_p to be able to compare * the addresses. * * Return None if any of the checks fail. * Note that isl_id_get_user returning NULL automatically results in None. */ static const char *const id_user = &R"( def user(self): free_user = cast(Context.free_user, c_void_p) id_free_user = cast(isl.isl_id_get_free_user(self.ptr), c_void_p) if id_free_user.value != free_user.value: return None return isl.isl_id_get_user(self.ptr) )"[1]; /* Print any special methods of this class that are not * automatically derived from the C interface. * * In particular, print a special method for the "id" class. */ void python_generator::print_special_methods(const isl_class &clazz) { if (clazz.name != "isl_id") return; printf("%s", id_user); } /* If "clazz" has a type function describing subclasses, * then add constructors that allow each of these subclasses * to be treated as an object to the superclass. */ void python_generator::print_upcast_constructors(const isl_class &clazz) { map::const_iterator i; if (!clazz.fn_type) return; for (i = clazz.type_subclasses.begin(); i != clazz.type_subclasses.end(); ++i) { printf(" if len(args) == 1 and " "isinstance(args[0], %s):\n", type2python(i->second).c_str()); printf(" self.ctx = args[0].ctx\n"); printf(" self.ptr = isl.%s_copy(args[0].ptr)\n", clazz.name.c_str()); printf(" return\n"); } } /* Print the header of the class "name" with superclasses "super". * The order of the superclasses is the opposite of the order * in which the corresponding annotations appear in the source code. * If "clazz" is a subclass derived from a type function, * then the immediate superclass is recorded in "clazz" itself. */ void python_generator::print_class_header(const isl_class &clazz, const string &name, const vector &super) { printf("class %s", name.c_str()); if (super.size() > 0) { printf("("); for (unsigned i = 0; i < super.size(); ++i) { if (i > 0) printf(", "); printf("%s", type2python(super[i]).c_str()); } printf(")"); } else if (clazz.is_type_subclass()) { printf("(%s)", type2python(clazz.superclass_name).c_str()); } else { printf("(object)"); } printf(":\n"); } /* Tell ctypes about the return type of "fd". * In particular, if "fd" returns a pointer to an isl object, * then tell ctypes it returns a "c_void_p". * If "fd" returns a char *, then simply tell ctypes. * * Nothing needs to be done for functions returning * isl_bool, isl_stat or isl_size since they are represented by an int and * ctypes assumes that a function returns int by default. */ void python_generator::print_restype(FunctionDecl *fd) { string fullname = fd->getName().str(); QualType type = fd->getReturnType(); if (is_isl_type(type)) printf("isl.%s.restype = c_void_p\n", fullname.c_str()); else if (is_string(type)) printf("isl.%s.restype = POINTER(c_char)\n", fullname.c_str()); } /* Tell ctypes about the types of the arguments of the function "fd". * * Any callback argument is followed by a user pointer argument. * Each such pair or arguments is handled together. */ void python_generator::print_argtypes(FunctionDecl *fd) { string fullname = fd->getName().str(); int n = fd->getNumParams(); printf("isl.%s.argtypes = [", fullname.c_str()); for (int i = 0; i < n; ++i) { ParmVarDecl *param = fd->getParamDecl(i); QualType type = param->getOriginalType(); if (i) printf(", "); if (is_isl_ctx(type)) printf("Context"); else if (is_isl_type(type)) printf("c_void_p"); else if (is_callback(type)) printf("c_void_p, c_void_p"); else if (is_string(type)) printf("c_char_p"); else if (is_long(type)) printf("c_long"); else printf("c_int"); if (is_callback(type)) ++i; } printf("]\n"); } /* Print type definitions for the method 'fd'. */ void python_generator::print_method_type(FunctionDecl *fd) { print_restype(fd); print_argtypes(fd); } /* If "clazz" has a type function describing subclasses or * if it is one of those type subclasses, then print a __new__ method. * * In the superclass, the __new__ method constructs an object * of the subclass type specified by the type function, * raising an error on an error type. * In the subclass, the __new__ method reverts to the original behavior. */ void python_generator::print_new(const isl_class &clazz, const string &python_name) { if (!clazz.fn_type && !clazz.is_type_subclass()) return; printf(" def __new__(cls, *args, **keywords):\n"); if (clazz.fn_type) { map::const_iterator i; printf(" if \"ptr\" in keywords:\n"); printf(" type = isl.%s(keywords[\"ptr\"])\n", clazz.fn_type->getNameAsString().c_str()); for (i = clazz.type_subclasses.begin(); i != clazz.type_subclasses.end(); ++i) { printf(" if type == %d:\n", i->first); printf(" return %s(**keywords)\n", type2python(i->second).c_str()); } printf(" raise Error\n"); } printf(" return super(%s, cls).__new__(cls)\n", python_name.c_str()); } /* Print declarations for methods printing the class representation, * provided there is a corresponding *_to_str function. * * In particular, provide an implementation of __str__ and __repr__ methods to * override the default representation used by python. Python uses __str__ to * pretty print the class (e.g., when calling print(obj)) and uses __repr__ * when printing a precise representation of an object (e.g., when dumping it * in the REPL console). * * Check the type of the argument before calling the *_to_str function * on it in case the method was called on an object from a subclass. * * The return value of the *_to_str function is decoded to a python string * assuming an 'ascii' encoding. This is necessary for python 3 compatibility. */ void python_generator::print_representation(const isl_class &clazz, const string &python_name) { if (!clazz.fn_to_str) return; printf(" def __str__(arg0):\n"); print_type_check(8, python_name, fixed_arg_fmt, 0, false, "", "", -1); printf(" ptr = isl.%s(arg0.ptr)\n", string(clazz.fn_to_str->getName()).c_str()); printf(" res = cast(ptr, c_char_p).value.decode('ascii')\n"); printf(" libc.free(ptr)\n"); printf(" return res\n"); printf(" def __repr__(self):\n"); printf(" s = str(self)\n"); printf(" if '\"' in s:\n"); printf(" return 'isl.%s(\"\"\"%%s\"\"\")' %% s\n", python_name.c_str()); printf(" else:\n"); printf(" return 'isl.%s(\"%%s\")' %% s\n", python_name.c_str()); } /* If "clazz" has any persistent callbacks, then print the definition * of a "copy_callbacks" function that copies the persistent callbacks * from one object to another. */ void python_generator::print_copy_callbacks(const isl_class &clazz) { const set &callbacks = clazz.persistent_callbacks; set::const_iterator in; if (!clazz.has_persistent_callbacks()) return; printf(" def copy_callbacks(self, obj):\n"); for (in = callbacks.begin(); in != callbacks.end(); ++in) { string callback_name = clazz.persistent_callback_name(*in); printf(" if hasattr(obj, '%s'):\n", callback_name.c_str()); printf(" self.%s = obj.%s\n", callback_name.c_str(), callback_name.c_str()); } } /* Print code to set method type signatures. * * To be able to call C functions it is necessary to explicitly set their * argument and result types. Do this for all exported constructors and * methods (including those that set a persistent callback and * those that set an enum value), * as well as for the *_to_str and the type function, if they exist. * Assuming each exported class has a *_copy and a *_free method, * also unconditionally set the type of such methods. */ void python_generator::print_method_types(const isl_class &clazz) { function_set::const_iterator in; map::const_iterator it; map >::const_iterator ie; const set &callbacks = clazz.persistent_callbacks; for (in = clazz.constructors.begin(); in != clazz.constructors.end(); ++in) print_method_type(*in); for (in = callbacks.begin(); in != callbacks.end(); ++in) print_method_type(*in); for (it = clazz.methods.begin(); it != clazz.methods.end(); ++it) for (in = it->second.begin(); in != it->second.end(); ++in) print_method_type(*in); for (ie = clazz.set_enums.begin(); ie != clazz.set_enums.end(); ++ie) print_method_type(ie->first); print_method_type(clazz.fn_copy); print_method_type(clazz.fn_free); if (clazz.fn_to_str) print_method_type(clazz.fn_to_str); if (clazz.fn_type) print_method_type(clazz.fn_type); } /* Print out the definition of this isl_class. * * We first check if this isl_class is a subclass of one or more other classes. * If it is, we make sure those superclasses are printed out first. * * Then we print a constructor with several cases, one for constructing * a Python object from a return value, one for each function that * was marked as a constructor, a class specific constructor, if any, and * one for each type based subclass. * * Next, we print out some common methods, class specific methods and * the methods corresponding * to functions that are not marked as constructors, including those * that set a persistent callback and those that set an enum value. * * Finally, we tell ctypes about the types of the arguments of the * constructor functions and the return types of those function returning * an isl object. */ void python_generator::print(const isl_class &clazz) { string p_name = type2python(clazz.subclass_name); vector super = find_superclasses(clazz.type); const set &callbacks = clazz.persistent_callbacks; for (unsigned i = 0; i < super.size(); ++i) if (done.find(super[i]) == done.end()) print(classes[super[i]]); if (clazz.is_type_subclass() && done.find(clazz.name) == done.end()) print(classes[clazz.name]); done.insert(clazz.subclass_name); printf("\n"); print_class_header(clazz, p_name, super); printf(" def __init__(self, *args, **keywords):\n"); printf(" if \"ptr\" in keywords:\n"); printf(" self.ctx = keywords[\"ctx\"]\n"); printf(" self.ptr = keywords[\"ptr\"]\n"); printf(" return\n"); for (const auto &cons : clazz.constructors) print_constructor(clazz, cons); print_special_constructors(clazz); print_upcast_constructors(clazz); printf(" raise Error\n"); printf(" def __del__(self):\n"); printf(" if hasattr(self, 'ptr'):\n"); printf(" isl.%s_free(self.ptr)\n", clazz.name.c_str()); print_new(clazz, p_name); print_representation(clazz, p_name); print_copy_callbacks(clazz); print_special_methods(clazz); for (const auto &callback : callbacks) print_method(clazz, callback, super); for (const auto &kvp : clazz.methods) print_method(clazz, kvp.first, kvp.second, super); for (const auto &kvp : clazz.set_enums) print_set_enum(clazz, kvp.first, super); printf("\n"); print_method_types(clazz); } /* Generate a python interface based on the extracted types and * functions. * * Print out each class in turn. If one of these is a subclass of some * other class, make sure the superclass is printed out first. * functions. */ void python_generator::generate() { map::iterator ci; for (ci = classes.begin(); ci != classes.end(); ++ci) { if (done.find(ci->first) == done.end()) print(ci->second); } }