% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % The Project Gutenberg EBook of Elliptic Functions, by Arthur L. Baker % % % % This eBook is for the use of anyone anywhere at no cost and with % % almost no restrictions whatsoever. You may copy it, give it away or % % re-use it under the terms of the Project Gutenberg License included % % with this eBook or online at www.gutenberg.org % % % % % % Title: Elliptic Functions % % An Elementary Text-Book for Students of Mathematics % % % % Author: Arthur L. Baker % % % % Release Date: January 25, 2010 [EBook #31076] % % % % Language: English % % % % Character set encoding: ISO-8859-1 % % % % *** START OF THIS PROJECT GUTENBERG EBOOK ELLIPTIC FUNCTIONS *** % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \def\ebook{31076} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %% %% Packages and substitutions: %% %% %% %% book: Required. %% %% inputenc: Standard DP encoding. Required. %% %% %% %% fix-cm: For larger title page fonts. Optional. %% %% ifthen: Logical conditionals. Required. %% %% %% %% amsmath: AMS mathematics enhancements. Required. %% %% amssymb: Additional mathematical symbols. Required. %% %% %% %% alltt: Fixed-width font environment. Required. %% %% array: Enhanced tabular features. Required. %% %% %% %% mathpazo: Postscript fonts with old style numerals. Required. %% %% %% %% footmisc: Extended footnote capabilities. Required. %% %% perpage: Start footnote numbering on each page. Required. %% %% %% %% indentfirst: Indent first word of each sectional unit. Optional. %% %% textcase: Apply \MakeUppercase (et al.) only to text, not math. %% %% Required. %% %% %% %% calc: Length calculations. Required. %% %% soul: Spaced text. Optional. %% %% %% %% fancyhdr: Enhanced running headers and footers. Required. %% %% %% %% graphicx: Standard interface for graphics inclusion. Required. %% %% wrapfig: Illustrations surrounded by text. Required. %% %% %% %% geometry: Enhanced page layout package. Required. %% %% hyperref: Hypertext embellishments for pdf output. Required. %% %% %% %% %% %% Producer's Comments: %% %% %% %% Changes are noted in this file in three ways. %% %% 1. \DPnote{} for in-line `placeholder' notes. %% %% 2. \DPtypo{}{} for typographical corrections, showing original %% %% and replacement text side-by-side. %% %% 3. [** PP: Note]s for lengthier or stylistic comments. %% %% %% %% %% %% Compilation Flags: %% %% %% %% The following behavior may be controlled by boolean flags. %% %% %% %% ForPrinting (false by default): %% %% Compile a screen-optimized PDF file. Set to false for print- %% %% optimized file (pages cropped, one-sided, blue hyperlinks). %% %% %% %% %% %% Things to Check: %% %% %% %% %% %% Spellcheck: .................................. OK %% %% Smoothreading pool: ......................... yes %% %% %% %% lacheck: ..................................... OK %% %% Numerous false positives from commented code %% %% %% %% PDF pages: 147 (if ForPrinting set to false) %% %% PDF page size: 5.25 x 6.25in (if ForPrinting set to false) %% %% PDF bookmarks: created, point to ToC entries %% %% PDF document info: filled in %% %% Images: 4 pdf diagrams %% %% %% %% Summary of log file: %% %% * Five overfull hboxes (Widest is ~1.2pt overfull). %% %% %% %% %% %% Compile History: %% %% %% %% January, 2010: adhere (Andrew D. Hwang) %% %% texlive2007, GNU/Linux %% %% %% %% Command block: %% %% %% %% pdflatex x3 (Run pdflatex three times) %% %% %% %% %% %% January 2010: pglatex. %% %% Compile this project with: %% %% pdflatex 31076-t.tex ..... THREE times %% %% %% %% pdfTeXk, Version 3.141592-1.40.3 (Web2C 7.5.6) %% %% %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \listfiles \documentclass[12pt,leqno]{book}[2005/09/16] %%%%%%%%%%%%%%%%%%%%%%%%%%%%% PACKAGES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage[latin1]{inputenc}[2006/05/05] \usepackage[osf]{mathpazo}[2005/04/12] \usepackage{ifthen}[2001/05/26] %% Logical conditionals \usepackage{amsmath}[2000/07/18] %% Displayed equations \usepackage{amssymb}[2002/01/22] %% and additional symbols \usepackage{alltt}[1997/06/16] %% boilerplate, credits, license \usepackage{array}[2005/08/23] %% extended array/tabular features %% extended footnote capabilities \usepackage[symbol]{footmisc}[2005/03/17] \usepackage{perpage}[2006/07/15] \usepackage{graphicx}[1999/02/16]%% For diagrams \usepackage{wrapfig}[2003/01/31] %% and wrapping text around them \usepackage{indentfirst}[1995/11/23] \usepackage{textcase}[2004/10/07] \usepackage{calc}[2005/08/06] \IfFileExists{fix-cm.sty}{% %% For larger title page fonts \usepackage{fix-cm}[2006/03/24]% \newcommand{\MyHuge}{\fontsize{38}{48}\selectfont}% }{% else \newcommand{\MyHuge}{\Huge}% } \IfFileExists{soul.sty}{% %% For spaced publisher's line \usepackage{soul}[2003/11/17] }{% else \newcommand{\so}[1]{#1}% } % for running heads \usepackage{fancyhdr} \newcommand{\Titleskip}[1]{#1\TmpLen} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Interlude: Set up PRINTING (default) or SCREEN VIEWING %%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ForPrinting=true (default) false % Asymmetric margins Symmetric margins % Black hyperlinks Blue hyperlinks % Start Preface, ToC, etc. recto No blank verso pages % % Chapter-like ``Sections'' start both recto and verso in the scanned % book. This behavior has been retained. \newboolean{ForPrinting} %% UNCOMMENT the next line for a PRINT-OPTIMIZED VERSION of the text %% %\setboolean{ForPrinting}{true} %% Initialize values to ForPrinting=false \newcommand{\Margins}{hmarginratio=1:1} % Symmetric margins \newcommand{\HLinkColor}{blue} % Hyperlink color \newcommand{\PDFPageLayout}{SinglePage} \newcommand{\TransNote}{Transcriber's Note} \newcommand{\TransNoteCommon}{% This book was produced from images provided by the Cornell University Library: Historical Mathematics Monographs collection. \bigskip Minor typographical corrections and presentational changes have been made without comment. The calculations preceding equation~\Eqno{(15)} on \Pageref{page}{12} (page~12 of the original) have been re-formatted. \bigskip } \newcommand{\TransNoteText}{% \TransNoteCommon This PDF file is optimized for screen viewing, but may easily be recompiled for printing. Please see the preamble of the \LaTeX\ source file for instructions. } %% Re-set if ForPrinting=true \ifthenelse{\boolean{ForPrinting}}{% \renewcommand{\Margins}{hmarginratio=2:3} % Asymmetric margins \renewcommand{\HLinkColor}{black} % Hyperlink color \renewcommand{\PDFPageLayout}{TwoPageRight} \renewcommand{\TransNote}{Transcriber's Note} \renewcommand{\TransNoteText}{% \TransNoteCommon This PDF file is optimized for printing, but may easily be recompiled for screen viewing. Please see the preamble of the \LaTeX\ source file for instructions. } }{% If ForPrinting=false, don't skip to recto \renewcommand{\cleardoublepage}{\clearpage} } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% End of PRINTING/SCREEN VIEWING code; back to packages %%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Set page dimensions %\usepackage[body={5.25in,8.4in},\Margins]{geometry}[2002/07/08] % If text block size is changed, illustrations must be relocated, % so print and screen versions use the same text block size. \ifthenelse{\boolean{ForPrinting}}{% \setlength{\paperwidth}{8.5in} \setlength{\paperheight}{11in} \usepackage[body={5.25in,7in},\Margins]{geometry}[2002/07/08] }{% \setlength{\paperwidth}{5.5in} \setlength{\paperheight}{7.333in} \raggedbottom \usepackage[body={5.25in,6.25in},\Margins,includeheadfoot]{geometry}[2002/07/08] } \providecommand{\ebook}{00000} % Overridden during white-washing \usepackage[pdftex, hyperfootnotes=false, pdftitle={The Project Gutenberg eBook \#\ebook: Elliptic Functions}, pdfauthor={Arthur L. Baker}, pdfkeywords={Brenda Lewis, Andrew D. Hwang, Project Gutenberg Online Distributed Proofreading Team, Cornell University Historical Mathematical Monographs Collection}, pdfstartview=Fit, % default value pdfstartpage=1, % default value pdfpagemode=UseNone, % default value bookmarks=true, % default value linktocpage=false, % default value pdfpagelayout=\PDFPageLayout, pdfdisplaydoctitle, pdfpagelabels=true, bookmarksopen=true, bookmarksopenlevel=1, colorlinks=true, linkcolor=\HLinkColor]{hyperref}[2007/02/07] % Re-crop screen-formatted version, accommodating wide displays \ifthenelse{\boolean{ForPrinting}} {} % {\hypersetup{pdfpagescrop= 85 80 527 765}} {\hypersetup{pdfpagescrop= 0 0 396 528}} %%%% Fixed-width environment to format PG boilerplate %%%% % 9.2pt leaves no overfull hbox at 80 char line width \newenvironment{PGtext}{% \begin{alltt} \fontsize{9.2}{10.5}\ttfamily\selectfont}% {\end{alltt}} %% No hrule in page header \renewcommand{\headrulewidth}{0pt} %% Larger spacing in arrays \newcommand{\ASTR}{1.5} % Default array stretch \newcommand{\SMSTR}{1.2}% Small array stretch \renewcommand{\arraystretch}{\ASTR} \newcommand{\Dots}[1]{\hdotsfor[6]{#1}} \newcommand{\NegMathSkip}{\vspace*{-1.8\baselineskip}} % Top-level footnote numbers restart on each page \MakePerPage{footnote} \newcommand{\ToCFont}{\normalfont\small\scshape} \newcommand{\Heading}{\normalfont\Large\scshape} \newcommand{\mychapno}{}% Set to roman number of current chapter \makeatletter \renewcommand\l@chapter{\@dottedtocline{0}{0em}{3.5em}} \renewcommand{\@dotsep}{24} \makeatother % Running heads \newcommand{\SetRunningHeads}[1]{% \fancyhead{} \setlength{\headheight}{15pt} \thispagestyle{empty} \fancyhead[CE]{\textit{ELLIPTIC FUNCTIONS.}} \fancyhead[CO]{\textit{\MakeTextUppercase{#1}}} \ifthenelse{\boolean{ForPrinting}} {\fancyhead[RO,LE]{\thepage}} {\fancyhead[R]{\thepage}} } % ToC line for generic chapter \newcommand{\SetContentsLine}[3]{% \addcontentsline{toc}{chapter}{% \protect\texorpdfstring{\protect\makebox[\TmpLen][r]{% \protect\ToCFont#2\protect\@.} \protect\ToCFont #3}{#2. #1}% } } %\Chapter[PDF name]{Number.}{Heading title} \newcommand{\Chapter}[3][]{% \cleardoublepage \phantomsection \renewcommand{\mychapno}{#2} \label{chapter:#2} \section*{\centering\Heading% CHAPTER #2.\rule[-16pt]{0pt}{16pt}\break% \MakeTextUppercase{\large #3}} \ifthenelse{\equal{#2}{I}}{% ** Chapter{I} has no optional argument % Set \TmpLen to width of `Chap. I.' in ToC file \addtocontents{toc}{% \protect\settowidth{\protect\TmpLen}{\protect\ToCFont Chap.\ I.} }% \addcontentsline{toc}{chapter}{\protect\texorpdfstring{% \protect\ToCFont Chap.~I\protect\@. #3}{I. #3}}% }{% \ifthenelse{\equal{#1}{}}% ** Need to pass alt. title to texorpdfstring? {\SetContentsLine{#3}{#2}{#3}}{\SetContentsLine{#1}{#2}{#3}}% }% \SetRunningHeads{#3} } \newcommand{\IntroChapter}[2]{% \cleardoublepage \phantomsection \begin{center} \Heading\Huge \MakeTextUppercase{#2}\\ \tb \end{center} \section*{\centering\Heading \MakeTextUppercase{#1}\break} \addtocontents{toc}{\protect\thispagestyle{empty}} \addtocontents{toc}{\protect\vspace*{-2\baselineskip}} \addtocontents{toc}{} \addtocontents{toc}{% \protect\hfill\protect\smash{\protect\scshape\protect\footnotesize page} }% \addtocontents{toc}{} \addtocontents{toc}{\protect\vspace*{-\baselineskip}} \addtocontents{toc}{} \addcontentsline{toc}{chapter}{% \texorpdfstring{\protect\ToCFont}{} Introductory Chapter.}% \SetRunningHeads{#1} } \newcommand{\Section}[1] {\subsection*{\centering\normalfont\textsc{\MakeTextUppercase{\small#1}}}} \newenvironment{Remark} {\medskip\par\footnotesize\textsc{Note}.---} {\medskip\normalsize} \DeclareMathOperator{\ac}{a. c.} \DeclareMathOperator{\am}{am} \DeclareMathOperator{\cn}{cn} \DeclareMathOperator{\dn}{dn} \DeclareMathOperator{\sn}{sn} \DeclareMathOperator{\tn}{tn} \newcommand{\sinP}{\operatorname{\PadTo[l]{\tan^{2}}{\sin}}} \newcommand{\cosP}{\operatorname{\PadTo[l]{\tan^{2}}{\cos}}} \DeclareMathSizes{12}{11}{9}{8} \newcommand{\Prod}{\bigl[{\textstyle\prod}\bigr]} \newcommand{\Prodlim}[1][1]{\bigl[{\textstyle\prod\limits^{#1}_n}\bigr]} \newcommand{\Eta}{H} \newcommand{\Input}[2][] {\ifthenelse{\equal{#1}{}} {\includegraphics{./images/#2.pdf}} {\includegraphics[width=#1]{./images/#2.pdf}}% } % Usage: \Example. (including the period) \newcommand{\Example}[1]{\textsc{Example#1}\quad} \newcommand{\primo}{1\textsuperscript{o}} \newcommand{\secundo}{2\textsuperscript{o}} \newcommand{\First}[1]{\textsc{#1}} % For corrections. \newcommand{\DPtypo}[2]{#2} \newcommand{\DPnote}[1]{} % \PadTo[#1]{#2}{#3} sets #3 in a box of width #2, aligned at #1 (default [c]) % Examples: \PadTo{feet per sec.}{\Ditto}, \PadTo{The value is}{2.} \newlength{\TmpLen} \newcommand{\PadTo}[3][c]{% \settowidth{\TmpLen}{$#2$}% \makebox[\TmpLen][#1]{$#3$}% } \newcommand{\tb}{\rule{1in}{0.5pt}} \newcommand{\Z}{\phantom{0}} \newcommand{\stretchyspace}{\spaceskip0.5em plus 0.25em minus 0.125em} \DeclareInputText{176}{\ifmmode{{}^\circ}\else\textdegree\fi} \DeclareInputText{183}{\ifmmode\cdot\else\textperiodcentered\fi} % ToC formatting \AtBeginDocument{\renewcommand{\contentsname}% {\centering\ToCFont\Large CONTENTS\\\tb}} % Cross-referencing: anchors \newcommand{\Pagelabel}[1] {\phantomsection\label{page:#1}} \newcommand{\Figlabel}[1] {\phantomsection\label{fig:#1}} \newcommand{\Tag}[2][]{% \phantomsection \ifthenelse{\equal{#1}{}} {\label{eqn:\mychapno.#2}} {\label{eqn:\mychapno.(#1)}} \tag*{\normalsize\ensuremath{#2}} } % and links \newcommand{\Pageref}[2] {\hyperref[page:#2]{#1~\pageref{page:#2}}} \newcommand{\Eqrefchap}{I} \newcommand{\Eqrefname}{equation} % \Eqref[text name]{Link text}{chapter}{(equation)}, e.g. % \Eqref{equation}{}{(5)}, \Eqref[14sub1]{eq.}{III}{(14_1)}, etc. \newcommand{\Eqref}[4][]{% \ifthenelse{\equal{#3}{}}{% \renewcommand{\Eqrefchap}{\mychapno}% }{% \renewcommand{\Eqrefchap}{#3}% }% \ifthenelse{\equal{#2}{}}{% \renewcommand{\Eqrefname}{}% }{% \renewcommand{\Eqrefname}{#2~}% }% \ifthenelse{\equal{#1}{}}{% \hyperref[eqn:\Eqrefchap.#4]{\Eqrefname\Eqno{#4}}% }{% \hyperref[eqn:\Eqrefchap.(#1)]{\Eqrefname\Eqno{#4}}% }% } \newcommand{\Eqno}[1]{\normalsize\ensuremath{#1}} \newcommand{\Chapref}[2]{\hyperref[chapter:#2]{#1~#2}} % DPalign, DPgather \makeatletter \providecommand\shortintertext\intertext \newcount\DP@lign@no \newtoks\DP@lignb@dy \newif\ifDP@cr \newif\ifbr@ce \def\f@@zl@bar{\null} \def\addto@DPbody#1{\global\DP@lignb@dy\@xp{\the\DP@lignb@dy#1}} \def\parseb@dy#1{\ifx\f@@zl@bar#1\f@@zl@bar \addto@DPbody{{}}\let\@next\parseb@dy \else\ifx\end#1 \let\@next\process@DPb@dy \ifDP@cr\else\addto@DPbody{\DPh@@kr&\DP@rint}\@xp\addto@DPbody\@xp{\@xp{\the\DP@lign@no}&}\fi \addto@DPbody{\end} \else\ifx\intertext#1 \def\@next{\eat@command0}% \else\ifx\shortintertext#1 \def\@next{\eat@command1}% \else\ifDP@cr\addto@DPbody{&\DP@lint}\@xp\addto@DPbody\@xp{\@xp{\the\DP@lign@no}&\DPh@@kl} \DP@crfalse\fi \ifx\begin#1\def\begin@stack{b} \let\@next\eat@environment \else\ifx\lintertext#1 \let\@next\linter@text \else\ifx\rintertext#1 \let\@next\rinter@text \else\ifx\\#1 \addto@DPbody{\DPh@@kr&\DP@rint}\@xp\addto@DPbody\@xp{\@xp{\the\DP@lign@no}&\\}\DP@crtrue \global\advance\DP@lign@no\@ne \let\@next\parse@cr \else\check@braces#1!Q!Q!Q!\ifbr@ce\addto@DPbody{{#1}}\else \addto@DPbody{#1}\fi \let\@next\parseb@dy \fi\fi\fi\fi\fi\fi\fi\fi\@next} \def\process@DPb@dy{\let\lintertext\@gobble\let\rintertext\@gobble \@xp\start@align\@xp\tw@\@xp\st@rredtrue\@xp\m@ne\the\DP@lignb@dy} \def\linter@text#1{\@xp\DPlint\@xp{\the\DP@lign@no}{#1}\parseb@dy} \def\rinter@text#1{\@xp\DPrint\@xp{\the\DP@lign@no}{#1}\parseb@dy} \def\DPlint#1#2{\@xp\def\csname DP@lint:#1\endcsname{\text{#2}}} \def\DPrint#1#2{\@xp\def\csname DP@rint:#1\endcsname{\text{#2}}} \def\DP@lint#1{\ifbalancedlrint\@xp\ifx\csname DP@lint:#1\endcsname\relax\phantom {\csname DP@rint:#1\endcsname}\else\csname DP@lint:#1\endcsname\fi \else\csname DP@lint:#1\endcsname\fi} \def\DP@rint#1{\ifbalancedlrint\@xp\ifx\csname DP@rint:#1\endcsname\relax\phantom {\csname DP@lint:#1\endcsname}\else\csname DP@rint:#1\endcsname\fi \else\csname DP@rint:#1\endcsname\fi} \def\eat@command#1#2{\ifcase#1\addto@DPbody{\intertext{#2}}\or \addto@DPbody{\shortintertext{#2}}\fi\DP@crtrue \global\advance\DP@lign@no\@ne\parseb@dy} \def\parse@cr{\new@ifnextchar*{\parse@crst}{\parse@crst{}}} \def\parse@crst#1{\addto@DPbody{#1}\new@ifnextchar[{\parse@crb}{\parseb@dy}} \def\parse@crb[#1]{\addto@DPbody{[#1]}\parseb@dy} \def\check@braces#1#2!Q!Q!Q!{\def\dp@lignt@stm@cro{#2}\ifx \empty\dp@lignt@stm@cro\br@cefalse\else\br@cetrue\fi} \def\eat@environment#1{\addto@DPbody{\begin{#1}}\begingroup \def\@currenvir{#1}\let\@next\digest@env\@next} \def\digest@env#1\end#2{% \edef\begin@stack{\push@begins#1\begin\end \@xp\@gobble\begin@stack}% \ifx\@empty\begin@stack \@checkend{#2} \endgroup\let\@next\parseb@dy\fi \addto@DPbody{#1\end{#2}} \@next} \def\lintertext{lint}\def\rintertext{rint} \newif\ifbalancedlrint \let\DPh@@kl\empty\let\DPh@@kr\empty \def\DPg@therl{&\omit\hfil$\displaystyle} \def\DPg@therr{$\hfil} \newenvironment{DPalign*}[1][a]{% \if m#1\balancedlrintfalse\else\balancedlrinttrue\fi \global\DP@lign@no\z@\DP@crfalse \DP@lignb@dy{&\DP@lint0&}\parseb@dy }{% \endalign } \newenvironment{DPgather*}[1][a]{% \if m#1\balancedlrintfalse\else\balancedlrinttrue\fi \global\DP@lign@no\z@\DP@crfalse \let\DPh@@kl\DPg@therl \let\DPh@@kr\DPg@therr \DP@lignb@dy{&\DP@lint0&\DPh@@kl}\parseb@dy }{% \endalign } \makeatother %%%%%%%%%%%%%%%%%%%%%%%% START OF DOCUMENT %%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} \pagestyle{empty} \pagenumbering{Alph} \phantomsection \pdfbookmark[-1]{Front Matter}{Front Matter} %%%% PG BOILERPLATE %%%% \Pagelabel{PGBoilerplate} \phantomsection \pdfbookmark[0]{PG Boilerplate}{Project Gutenberg Boilerplate} \begin{center} \begin{minipage}{\textwidth} \small \begin{PGtext} The Project Gutenberg EBook of Elliptic Functions, by Arthur L. Baker This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org Title: Elliptic Functions An Elementary Text-Book for Students of Mathematics Author: Arthur L. Baker Release Date: January 25, 2010 [EBook #31076] Language: English Character set encoding: ISO-8859-1 *** START OF THIS PROJECT GUTENBERG EBOOK ELLIPTIC FUNCTIONS *** \end{PGtext} \end{minipage} \end{center} \clearpage %%%% Credits and transcriber's note %%%% \begin{center} \begin{minipage}{\textwidth} \begin{PGtext} Produced by Andrew D. Hwang, Brenda Lewis and the Online Distributed Proofreading Team at http://www.pgdp.net (This file was produced from images from the Cornell University Library: Historical Mathematics Monographs collection.) \end{PGtext} \end{minipage} \end{center} \vfill \begin{minipage}{0.85\textwidth} \small \phantomsection \pdfbookmark[0]{Transcriber's Note}{Transcriber's Note} \subsection*{\centering\normalfont\scshape% \normalsize\MakeLowercase{\TransNote}}% \raggedright \TransNoteText \end{minipage} %%%%%%%%%%%%%%%%%%%%%%%%%%% FRONT MATTER %%%%%%%%%%%%%%%%%%%%%%%%%% %% -----File: 001.png---Folio xx------- %[** Title page] \frontmatter \pagenumbering{roman} \pagestyle{empty} \enlargethispage{36pt} % [** PP: Set line skip] \ifthenelse{\boolean{ForPrinting}}{% \setlength{\TmpLen}{0.2in}% }{% \setlength{\TmpLen}{0.125in}% } \begin{center} \makebox[0pt][c]{\centering\MyHuge\scshape Elliptic Functions.}\\[\Titleskip{4}] {\Large\scshape An Elementary Text-Book for \\[\Titleskip{1}] Students of Mathematics.}\\[\Titleskip{4}] % {\footnotesize BY}\\[\Titleskip{1}] % {\LARGE\scshape ARTHUR~L. BAKER, C.E., Ph.D.,}\\ \makebox[0pt][c]{\centering\footnotesize\scshape Professor of Mathematics in the Stevens School of the Stevens Institute of}\\ \makebox[0pt][c]{\centering\footnotesize\scshape Technology, Hoboken, N.~J.; formerly Professor in the Pardee} \\ \makebox[0pt][c]{\centering\footnotesize\scshape Scientific Department, Lafayette College, Easton, Pa.}\\[\Titleskip{4}] % \tb \[ \vphantom{\Bigg|}\sin \am u = \frac{1}{\sqrt{k}} · \frac{\Eta (u)}{\Theta (u)}. \] \tb\\[\Titleskip{4}] % NEW YORK: \\[2pt] {\large \so{JOHN WILEY \& SONS},} \\ {\scshape 53~East Tenth Street.} \\ 1890. \end{center} \clearpage %% -----File: 002.png---Folio xx------- \null\vfill \begin{center} Copyright, 1890, \\ {\footnotesize BY} \\ Arthur L. Baker. \end{center} \vfill\vfill \settowidth{\TmpLen}{444 \& 446 Pearl Street,}% \noindent\parbox[t]{\TmpLen}{\centering \textsc{Robert Drummond}, \\ \textit{Electrotyper}, \\ 444 \& 446 Pearl Street, \\ New York.} \hfill \settowidth{\TmpLen}{326 Pearl Street,}% \parbox[t]{\TmpLen}{\centering \textsc{Ferris Bros}., \\ \textit{Printers}, \\ 326 Pearl Street, \\ New York.} \clearpage %% -----File: 003.png---Folio xx------- \begin{center} {\Large PREFACE.}\\[8pt] \tb\\[16pt] \end{center} \phantomsection \pdfbookmark[0]{Preface}{Preface} \First{In} the works of Abel, Euler, Jacobi, Legendre, and others, the student of Mathematics has a most abundant supply of material for the study of the subject of Elliptic Functions. These works, however, are not accessible to the general student, and, in addition to being very technical in their treatment of the subject, are moreover in a foreign language. It is in the hope of smoothing the road to this interesting and increasingly important branch of Mathematics, and of putting within reach of the English student a tolerably complete outline of the subject, clothed in simple mathematical language and methods, that the present work has been compiled. New or original methods of treatment are not to be looked for. The most that can be expected will be the simplifying of methods and the reduction of them to such as will be intelligible to the average student of Higher Mathematics. I have endeavored throughout to use only such methods as are familiar to the ordinary student of Calculus, avoiding those methods of discussion dependent upon the properties of double periodicity, and also those depending upon Functions of Complex Variables. For the same reason I have not carried the discussion of the $\Theta$~and~$\Eta$ functions further. %% -----File: 004.png---Folio xx------- Among the minor helps to simplicity is the use of zero subscripts to indicate decreasing series in the Landen Transformation, and of numerical subscripts to indicate increasing series. I have adopted the notation of Gudermann, as being more simple than that of Jacobi. {\stretchyspace I have made free use of the following works: \textsc{Jacobi's} Fundamenta Nova Theoriæ Func.\ Ellip.; \textsc{Houel's} Calcul Infinitésimal; \textsc{Legendre's} Traité des Fonctions Elliptiques; \textsc{Durege's} Theorie der Elliptischen Functionen; \textsc{Hermite's} Théorie des Fonctions Elliptiques; \textsc{Verhulst's} Théorie des Functions Elliptiques; \textsc{Bertrand's} Calcul Intégral; \textsc{Laurent's} Théorie des Fonctions Elliptiques; \textsc{Cayley's} Elliptic Functions; \textsc{Byerly's} Integral Calculus; \textsc{Schlomilch's} Die Höheren Analysis; \textsc{Briot et Bouquet's} Fonctions Elliptiques.} I have refrained from any reference to the Gudermann or Weierstrass functions as not within the scope of this work, though the Gudermannians might have been interesting examples of verification formulæ. The arithmetico-geometrical mean, the march of the functions, and other interesting investigations have been left out for want of room. %% -----File: 005.png---Folio xx------- \clearpage \phantomsection \pdfbookmark[0]{Contents}{Contents}% \tableofcontents \iffalse CONTENTS. PAGE Introductory Chapter, 1 Chap. I. Elliptic Integrals, 4 II. Elliptic Functions, 16 III. Periodicity of the Functions, 22 IV. Landen's Transformation, 30 V. Complete Functions, 45 VI. Evaluation for \phi, 48 % [** PP: Next entry matches neither chapter title nor running head; % using chapter title] VII. Factorization of Elliptic Functions, 51 VIII. The \Theta Function, 66 IX. The \Theta and \Eta Functions, 69 X. Elliptic Integrals of the Second Order, 81 XI. Elliptic Integrals of the Third Order, 90 XII. Numerical Calculations, q, 94 XIII. Numerical Calculations, K, 98 XIV. Numerical Calculations, u, 102 XV. Numerical Calculations, \phi, 108 XVI. Numerical Calculations, E(k, \phi), 111 XVII. Applications, 115 \fi %% -----File: 006.png---Folio xx------- %[Blank Page] %% -----File: 007.png---Folio 1------- \mainmatter \phantomsection \pdfbookmark[-1]{Main Matter}{Main Matter} \pagenumbering{arabic} \pagestyle{fancy} \fancyfoot{} \IntroChapter{Introductory Chapter.\protect\footnotemark}{Elliptic Functions.} \footnotetext{Condensed from an article by Rev.\ Henry Moseley, M.A., F.R.S., Prof.\ of Nat.\ Phil.\ and Ast., King's College, London.} \First{The} first step taken in the theory of Elliptic Functions was the determination of a relation between the amplitudes of three functions of either order, such that there should exist an algebraic relation between the three functions themselves of which these were the amplitudes. It is one of the most remarkable discoveries which science owes to Euler. In 1761 he gave to the world the complete integration of an equation of two terms, each an elliptic function of the first or second order, not separately integrable. This integration introduced an arbitrary constant in the form of a third function, related to the first two by a given equation between the amplitudes of the three. In 1775 Landen, an English mathematician, published his celebrated theorem showing that any arc of a hyperbola may be measured by two arcs of an ellipse, an important element of the theory of Elliptic Functions, but \emph{then} an isolated result. The great problem of comparison of Elliptic Functions of different moduli remained unsolved, though Euler, in a measure, exhausted the comparison of functions of the same modulus. It was completed in 1784 by Lagrange, and for the computation %% -----File: 008.png---Folio 2------- of numerical results leaves little to be desired. The value of a function may be determined by it, in terms of increasing or diminishing moduli, until at length it depends upon a function having a modulus of zero, or unity. For all practical purposes this was sufficient. The enormous task of calculating tables was undertaken by Legendre. His labors did not end here, however. There is none of the discoveries of his predecessors which has not received some perfection at his hands; and it was he who first supplied to the whole that connection and arrangement which have made it an independent science. The theory of Elliptic Integrals remained at a standstill from 1786, the year when Legendre took it up, until the year 1827, when the second volume of his Traité des Fonctions Elliptiques appeared. Scarcely so, however, when there appeared the researches of Jacobi, a Professor of Mathematics in Königsberg, in the 123d~number of the Journal of Schumacher, and those of Abel, Professor of Mathematics at Christiania, in the 3d~number of Crelle's Journal for 1827. These publications put the theory of Elliptic Functions upon an entirely new basis. The researches of Jacobi have for their principal object the development of that general relation of functions of the first order having different moduli, of which the scales of \DPtypo{Legrange}{Lagrange} and Legendre are particular cases. It was to Abel that the idea first occurred of treating the Elliptic Integral as a function of its amplitude. Proceeding from this new point of view, he embraced in his speculations all the principal results of Jacobi. Having undertaken to develop the principle upon which rests the fundamental proposition of Euler establishing an algebraic relation between three functions which have the same moduli, dependent upon a certain relation of their amplitudes, he has extended it from three to an indefinite number of functions; and from Elliptic Functions to an infinite number of other functions embraced under an indefinite number of classes, of which that of Elliptic Functions %% -----File: 009.png---Folio 3------- is but one; and each class having a division analogous to that of Elliptic Functions into three orders having common properties. The discovery of Abel is of infinite moment as presenting the first step of approach towards a more complete theory of the infinite class of ultra elliptic functions, destined probably ere long to constitute one of the most important of the branches of transcendental analysis, and to include among the integrals of which it effects the solution some of those which at present arrest the researches of the philosopher in the very elements of physics. %% -----File: 010.png---Folio 4------- \Chapter{I}{Elliptic Integrals.} \First{The} integration of irrational expressions of the form \begin{gather*} X\, dx \sqrt{A + Bx + Cx^{2}},\\ \intertext{or} \frac{X\, dx}{\sqrt{A + Bx + Cx^{2}}}, \end{gather*} $X$ being a rational function of~$x$, is fully illustrated in most elementary works on Integral Calculus, and shown to depend upon the transcendentals known as logarithms and circular functions, which can be calculated by the proper logarithmic and trigonometric tables. When, however, we undertake to integrate irrational expressions containing higher powers of~$x$ than the square, we meet with insurmountable difficulties. This arises from the fact that the integral sought depends upon a new set of transcendentals, to which has been given the name of \emph{elliptic functions}, and whose characteristics we will learn hereafter. The name of Elliptic Integrals has been given to the simple integral forms to which can be reduced all integrals of the form \[ \Tag{(1)} V = \int F(X, R)\, dx, \] where $F(X, R)$ designates a rational function of $x$~and~$R$, and $R$~represents a radical of the form \[ R = \sqrt{Ax^{4} + Bx^{3} + Cx^{2} + Dx + E}, \] %% -----File: 011.png---Folio 5------- where $A$,~$B$,~$C$, $D$,~$E$ indicate constant coefficients. We will show presently that all cases of \Eqref{Eq.}{}{(1)} can be reduced to the three typical forms \[ \Tag{(2)} \begin{aligned} &\int_{0}^{x} \frac{dx}{\sqrt{(1 - x^{2})(1 - k^{2}x^{2})}}, \\ &\int_{0}^{x} \frac{x^{2}\, dx}{\sqrt{(1 - x^{2})(1 - k^{2}x^{2})}},\\ &\int_{0}^{x} \frac{dx}{(x^{2} + a) \sqrt{(1 - x^{2})(1 - k^{2}x^{2})}}, \end{aligned} \] which are called elliptic integrals of the first, second, and third order. Why they are called \emph{Elliptic} Integrals we will learn further on. The transcendental functions which depend upon these integrals, and which will be discussed in \Chapref{Chapter}{IV}, are called \emph{Elliptic Functions}. The most general form of \Eqref{Eq.}{}{(1)} is \[ \Tag{(3)} V = \int \frac{A + BR}{C + DR}\, dx; \] where $A$,~$B$,~$C$, and~$D$ stand for rational integral functions of~$x$. $\dfrac{A + BR}{C + DR}$ can be written \begin{align*} \frac{A + BR}{C + DR} &= \frac{AC - BDR^{2}}{C^{2} - D^{2}R^{2}} - \frac{(AD - CB)R^{2}}{C^{2} - D^{2}R^{2}} · \frac{1}{R}\\ &= N - \frac{P}{R}; \end{align*} %% -----File: 012.png---Folio 6------- $N$~and~$P$ being rational integral functions of~$x$. Whence \Eqref{Eq.}{}{(3)} becomes \[ \Tag{(4)} V = \int N\, dx - \int \frac{P\, dx}{R}. \] \Eqref{Eq.}{}{(4)} shows that the most general form of~$V$ can be made to depend upon the expressions \[ \Tag{(5)} V' = \int \frac{P\, dx}{R}, \] and \[ \int N\, dx. \] This last form is rational, and needs no discussion here. We can write \begin{align*} P &= \frac{G_{0} + G_{1}x + G_{2}x^{2} + \dotsb} {H_{0} + H_{1}x + H_{2}x^{2} + \dotsb} \\ &= \frac{G_{0} + G_{2}x^{2} + G_{4}x^{4} + \dotsb + (G_{1} + G_{3}x^{2} + \dotsb)x} {H_{0} + H_{2}x^{2} + H_{4}x^{4} + \dotsb + (H_{1} + H_{3}x^{2} + \dotsb)x}. \end{align*} Multiplying both numerator and denominator by \[ H_{0} + H_{2}x^{2} + H_{4}x^{4} + \dotsb - (H_{1} + H_{3}x^{2} + H_{5}x^{4} + \dotsb)x, \] we have a new \DPtypo{numerator}{denominator} which contains only powers of~$x^{2}$. The result takes the following form: \begin{align*} P &= \frac{M_{0} + M_{2}x^{2} + M_{4}x^{4} + \dotsb + (M_{1} + M_{3}x^{2} + M_{5}x^{4} + \dotsb)x} {N_{0} + N_{2}x^{2} + N_{4}x^{4} + N_{6}x^{6} + \dotsb} \\ &= \Phi(x^{2}) + \Psi(x^{2})·x. \end{align*} \Eqref{Equation}{}{(5)} thus becomes \[ \Tag{(6)} V' = \int \frac{\Phi(x^{2})\, dx}{R} + \int \frac{\Psi(x^{2}) · x · dx}{R}. \] %% -----File: 013.png---Folio 7------- We shall see presently that $R$ can always be assumed to be of the form \[ \sqrt{(1 - x^{2})(1 - k^{2}x^{2})}. \] Therefore, putting $x^{2} = z$, the second integral in \Eqref{Eq.}{}{(6)} takes the form \[ \frac{1}{2} \int \frac{\Psi(z) · dz}{\sqrt{(1 - z)(1 - k^{2}z)}}, \] which can be integrated by the well-known methods of Integral Calculus, resulting in logarithmic and circular transcendentals. There remains, therefore, only the form \[ \int \frac{\Phi(x^{2})\, dx}{R} \] to be determined. We will now show that $R$ can always be assumed to be in the form \[ \sqrt{(1 - x^{2})(1 - k^{2}x^{2})}. \] We have \begin{align*} R &= \sqrt{Ax^{4} + Bx^{3} + Cx^{2} + Dx + E} \\ &= \sqrt{G(x - a)(x - b)(x - c)(x - d)}, \end{align*} $a$,~$b$,~$c$, and~$d$ being the roots of the polynomial of the fourth degree, and $G$~any number, real or imaginary, depending upon the coefficients in the given polynomial. Substituting in \Eqref{equation}{}{(1)} \begin{align*} x &= \frac{p + qy}{1 + y}, \\ \intertext{we have} \Tag{(7)} V &= \int \phi(y, \rho)\, dy, \end{align*} %% -----File: 014.png---Folio 8------- $\rho$~designating the radical \[ \rho = \sqrt{G[p - a + (q - a)y] [p - b + (q - b)y] [p - c + (q - c)y]\DPtypo{}{\dotsm}} \DPtypo{\dotsm}{\;}. \] In order that the odd powers of~$y$ under the radical may disappear we must have their coefficients equal to zero; i.e., \begin{align*} (p - a)(q - b) + (p - b)(q - a) &= 0, \\ (p - c)(q - d) + (p - d)(q - c) &= 0; \end{align*} whence \begin{align*} 2pq - (p + q)(a + b) + 2ab &= 0, \\ 2pq - (p + q)(c + d) + 2cd &= 0, \end{align*} and \[ \Tag{(8)} \left\{ \begin{aligned} pq &= \frac{ab(c + d) - cd(a + b)}{a + b - (c + d)}, \\ p + q &= \frac{2ab - 2cd}{a + b - (c + d)}. \end{aligned} \right. \] \Eqref{Equation}{}{(8)} shows that $p$ and~$q$ are real quantities, whether the roots $a$,~$b$,~$c$, and~$d$ are real or imaginary; $a$,~$b$, and $c$,~$d$ being the conjugate pairs. Hence \Eqref{equation}{}{(1)} can always be reduced to the form of \Eqref{equation}{}{(7)}, which contains only the second and fourth powers of the variable. This transformation seems to fail when $a + b - (c + d) = 0$; but in that case we have \[ R = \sqrt{G[x^{2} - (a + b)x + ab][x^{2} - (a + b)x + cd]}, \] and substituting \[ x = y - \frac{a + b}{2} \] will cause the odd powers of~$y$ to disappear as before. If the radical should have the form \[ \sqrt{G(x - a)(x - b)(x - c)}, \] %% -----File: 015.png---Folio 9------- placing $x = y^{2} + a$, we get \begin{align*} V &= \int \phi(y, \rho)\, dy, \\ \rho &= \sqrt{G(y^{2} + a - b)(y^{2} + a - c)}, \end{align*} $\phi$~designating a rational function of $y$~and~$\rho$. Thus all integrals of the form contained in \Eqref{equation}{}{(1)}, in which $R$~stands for a quadratic surd of the third or fourth degree, can be reduced to the form \[ \Tag{(9)} V = \int \phi(x, R)\, dx, \] $R$~designating a radical of the form \[ \sqrt{G(1 + mx^{2})(1 + nx^{2})}, \] $m$~and~$n$ designating constants. It is evident that if we put \[ x' = x\sqrt{-m},\quad k^{2} = -\frac{n}{m}, \] we can reduce the radical to the form \[ \sqrt{(1 - x^{2})(1 - k^{2}x^{2})}. \] We shall see later on that the quantity~$k^{2}$, to which has been given the name \emph{modulus}, can always be considered real and less than unity. Combining these results with \Eqref{equation}{}{(6)}, we see that the integration of \Eqref{equation}{}{(1)} depends finally upon the integration of the expression \[ \Tag{(10)} V'' = \int \frac{\phi(x^{2})\, dx}{\sqrt{(1 - x^{2})(1 - k^{2}x^{2})}} = \int \frac{\phi(x^{2})\, dx}{R}. \] %% -----File: 016.png---Folio 10------- The most general form of~$\phi(x^{2})$ is \begin{align*} \phi(x^{2}) &= \frac{M_{0} + M_{2}x^{2} + M_{4}x^{4} + \dotsb} {N_{0} + N_{2}x^{2} + N_{4}x^{4} + \dotsb} \\ &= P_{0} + P_{2}x^{2} + P_{4}x^{4} + P_{6}x^{\DPtypo{2}{6}} + \dotsb \\ &+ \sum \frac{L}{(x^{2} + a)^{n}}. %[** PP: Textstyle sums in original] \end{align*} Hence \[ \Tag{(11)} V'' = \sum P \int \frac{x^{2m}\, dx}{R} + \sum L \int \frac{dx}{(x^{2} + a)^{n}\, R}. \] But $\displaystyle\int \frac{x^{2m}\, dx}{R}$ depends upon $\displaystyle\int \frac{dx}{R}$ and $\displaystyle\int \frac{x^{2}\, dx}{R}$, which can be shown as follows: Differentiating $Rx^{2m-3}$, we have \begin{align*} d[x^{2m-3}R] &= d\left[x^{2m-3} \sqrt{\alpha + \beta x^{2} + \gamma x^{4}}\right] \\ &= (2m - 3)x^{2m-4}\, dx \sqrt{\alpha + \beta x^{2} + \gamma x^{4}} %\end{aligned} \\ + \frac{x^{2m-3}(\beta x + 2\gamma x^{3})\, dx} {\sqrt{\alpha + \beta x^{2} + \gamma x^{4}}}. \end{align*} Integrating and collecting, we get \begin{align*} Rx^{2m-3} &= \begin{aligned}[t] (2m - 3)\alpha \int \frac{x^{2m-4}\, dx}{R} &+ (2m - 2)\beta \int \frac{x^{2m-2}\, dx}{R} \\ &+ (2m - 1)\gamma \int \frac{x^{2m}\, dx}{R} \end{aligned} \\ % \Tag{(12)} &= \alpha' \int \frac{x^{2m-4}\, dx}{R} + \beta' \int \frac{x^{2m-2}\, dx}{R} + \gamma' \int \frac{x^{2m}\, dx}{R}. \end{align*} %% -----File: 017.png---Folio 11------- Whence we get, by taking $m=2$, \[ \Tag{(13)} Rx = \alpha \int \frac{dx}{R} + \beta \int \frac{x^{2}\, dx}{R} + \gamma \int \frac{x^{4}\, dx}{R}, \] which shows that the general expression $\displaystyle\int \frac{x^{2m}\, dx}{R}$ can be found by successive calculations, when we are able to integrate the expressions \[ \int \frac{dx}{R}\quad \text{and}\quad \int \frac{x^{2}\, dx}{R}, \] the first and second of \Eqref{equation}{}{(2)}. We will now consider the second class of terms in \Eqref{eq.}{}{(11)}, viz., $\dfrac{L\, dx}{(x^{2} + a)^{n}\, R}$. This second term is as follows: \begin{align*} \Tag{(14)} \sum \int \frac{L}{(x^{2} + a)^{n}\, R} = \int \frac{A\, dx}{(x^{2} + a)^{n}\, R} &+ \int \frac{B\, dx}{(x^{2} + a)^{n-1}\, R} \\ &+ \int \frac{C\, dx}{(x^{2} + a)^{n-2}\, R} + \dotsb \end{align*} Each of these terms can be shown to depend ultimately upon terms of the form \[ \frac{x^{2}\, dx}{R},\quad \frac{dx}{R},\quad \text{and}\quad \frac{dx}{(x^{2} + a)\, R}. \] The two former will be recognized as the two ultimate forms already discussed, the first and second of \Eqref{equation}{}{(2)}. The third is the third one of \Eqref{equation}{}{(2)}. This dependence of \Eqref{equation}{}{(14)} can be shown as follows: %% -----File: 018.png---Folio 12------- We have \begin{align*} d\left[\frac{xR}{(x^{2} + a)^{n-1}}\right] &= \frac{(x^{2} + a)^{n-1} (x\, dR + R\, dx) - 2x^{2} R(n + 1)(x^{2} + a)^{n-2}\, dx} {(x^{2} + a)^{2n-2}} \\ &= \frac{(x^{2} + a)(x\, dR + R\, dx) - 2x^{2} R(n - 1)\, dx}{(x^{2} + a)^{n}}. \end{align*} Substituting the value of \[ R = \sqrt{\alpha + \beta x^{2} + \gamma x^{4}}\quad\text{and}\quad dR = (\beta x + 2 \gamma x^{3})\, \frac{dx}{R}, \] we get \Pagelabel{12}% \begin{gather*} \begin{aligned} &d\left[\frac{xR}{(x^{2} + a)^{n-1}}\right] \\ %[** PP: Moving = to next line] % &= \frac{(x^{2} + a)(\beta x^{2} + 2 \gamma x^{4} + \alpha + \beta x^{2} + \gamma x^{4}) - 2x^{2}(n-1)(\alpha + \beta x^{2} + \gamma x^{4})} {(x^{2} + a)^{n}} · \frac{dx}{R} \end{aligned} \\ % \begin{aligned} &= \frac{\left\{\begin{aligned} \bigl(3\gamma - 2(n-1)\gamma\bigr) x^6 &+ \bigl(2\beta + 3a\gamma - 2(n-1)\beta\bigr) x^4 \\ &+ \bigl(2a\beta + \alpha - 2(n-1)\alpha\bigr) x^2 + a\alpha\end{aligned}\right\}} {(x^{2} + a)^{n}} · \frac{dx}{R} \\ % &= \frac{-(2n - 5)\gamma x^6 + \bigl(\DPnote{[**A]} - (2n - 4)\beta + 3a\gamma\bigr) x^4 + \bigl(\DPnote{[**B]} - (2n - 3)\alpha + \DPnote{[**C]} 2a\beta\bigr) x^2 + a\alpha} {(x^{2} + a)^{n}} · \frac{dx}{R}; \end{aligned} \end{gather*} %[** PP: This display has been completely re-set. Minor modifications % were required to maintain algebraic correctness: % **A & **B: (+ inserted, matching ) immediately precedes x^4, x^2 resp.; % **C: - typo corrected to +] or, by substituting in the numerator $x^{2} = z - a$, \[ = \frac{\left\{\begin{aligned}&- (2n - 5)\gamma z^3 \\ &+ \bigl((2n - 5) 3a\gamma - (2n - 4)\beta + 3a\gamma\bigr) z^2 \\ &+ \bigl(\DPnote{[**D]} - (2n - 5) 3a^2\gamma + (2n - 4) 2a\beta - 6a^2\gamma - (2n - 3)\alpha + 2a\beta\bigr) z \\ &+ \bigl((2n - 5)a^3\gamma - (2n - 4) a^2\beta + 3a^3\gamma + (2n - 3)a\alpha - 2a^2\beta + a\alpha\bigr)\end{aligned}\right\}}{(x^{2} + a)^{n}} · \frac{dx}{R}; \] %[**D: (+ inserted, matching ) immediately precedes z]} %% -----File: 019.png---Folio 13------- or, after resubstituting $z = x^2 + a$, and integrating, \begin{align*} \Tag{(15)} \frac{xR}{(x^2 + a)^{n - 1}} &= -(2n - 5)\gamma \int \frac{dx}{(x^2 + a)^{n - 3} R} \\ &\quad -(2n - 4)(\beta - 3a \gamma) \int \frac{dx}{(x^2 + a)^{n - 2} R}\\ &\quad -(2n - 3)(3 a^2 \gamma - 2a \beta + \alpha) \int \frac{dx}{(x^2 + a)^{n - 1} R}\\ &\quad +(2n - 2)(a^3 \gamma - a^2 \beta + a \alpha) \int \frac{dx}{(x^2 + a)^n R}. \end{align*} \begin{align*} = \alpha_{1} \int \frac{dx}{(x^2 + a)^{n - 3}R} + \beta_{1} \int \frac{dx}{(x^2 + a)^{n - 2}R} &+ \gamma_{1} \int \frac{dx}{(x^2 + a)^{n - 1}R}\\ &+ \delta_{1} \int \frac{dx}{(x^2 + a)^n R}. \end{align*} Making $n = 2$, we have \begin{align*} \Tag{(16)} \frac{xR}{(x^2 + a)^{\DPtypo{-1}{1}}} = \alpha_{1} \int \frac{(x^2 + a)\, dx}{R} + \beta_{1} \int \frac{dx}{R} &+ \gamma_{1} \int \frac{dx}{(x^2 + a)R} \\ &+ \delta_{1} \int \frac{dx}{(x^2 + a)^2 R}. \end{align*} \Eqref{Equation}{}{(16)} shows that \[ \int \frac{dx}{(x^2 + a)^2 R} \] depends upon the three forms \[ \int \frac{x^2\, dx}{R},\quad \int \frac{dx}{R},\quad \text{and}\quad \int \frac{dx}{(x^2 + a)R}, \] %% -----File: 020.png---Folio 14------- the three types of \Eqref{equation}{}{(2)}, and \Eqref{equation}{}{(15)} shows that the general form \[ \int \frac{dx}{(x^2 + a)^n R} \] depends ultimately upon the same three types. We have now discussed every form which the general \Eqref{equation}{}{(1)} can assume, and shown that they all depend ultimately upon one or more of the three types contained in \Eqref{equation}{}{(2)}. These three types are called the three Elliptic Integrals of the first, second, and third kind, respectively. Legendre puts $x = \sin \phi$, and reduces the three integrals to the following forms: \begin{align*}%[** PP: Aligning next three lines] \Tag{(17)} F(k, \phi) &= \int_{0}^{\phi} \frac{d \phi}{\sqrt{1 - k^2 \sin^2 \phi}}; \\ &\quad \llap{$\dfrac{1}{k^2}$} \int_{0}^{\phi} \frac{d \phi}{\sqrt{1 - k^2 \sin^2 \phi}} - \frac{1}{k^2} \int_{0}^{\phi} \sqrt{1 - k^2 \sin^{2} \phi} · d \phi; \\ \Tag{(18)} \varPi(n, k, \phi) &= \int_{0}^{\phi} \frac{d \phi}{(1 - n \sin^2 \phi) \sqrt{1 - k^2 \sin^2 \phi}}; \end{align*} the first being Legendre's integral of the first kind; the form \[ \Tag{(19)} E(k, \phi) = \int_{0}^{\phi} \sqrt{1 - k^2 \sin^2 \phi} · d \phi \] being the integral of the second kind; and the third one being the integral of the third kind. The form of the integral of the second kind shows why they are called Elliptic Integrals, the arc of an elliptic quadrant being equal to \[ a \int_{0}^{\frac{\pi}{2}} \sqrt{1 - e^2 \sin^2 \phi} · d\phi, \] $\phi$ being the complement of the eccentric angle. %% -----File: 021.png---Folio 15------- By easy substitutions, we get from \Eqref{Eqs.}{}{(17)},~\Eqref{}{}{(18)}, and~\Eqref{}{}{(19)} the following solutions: \setlength{\TmpLen}{1.5ex}% \begin{align*} \int_{0}^{\phi} \frac{\sin^2 \phi}{\Delta}\, d\phi &= \frac{F - E}{k^2}; \\[\TmpLen] % \int_{0}^{\phi} \frac{\cos^2 \phi}{\Delta}\, d\phi &= \frac{E - (1 - k^2)F}{k^2}; \\[\TmpLen] % \int_{0}^{\phi} \frac{\tan^2 \phi}{\Delta}\, d\phi &= \frac{\Delta \tan \phi - E}{1 - k^2}; \\[\TmpLen] % \int_{0}^{\phi} \frac{\sec^2 \phi}{\Delta}\, d\phi &= \frac{\Delta \tan \phi + (1 - k^2)F - E}{1 - k^2}; \\[\TmpLen] % \int_{0}^{\phi} \frac{1}{\Delta^3}\, d\phi &= \frac{1}{1 - k^2} \left(E - \frac{k^2 \sin\phi \cos\phi}{\Delta} \right); \\[\TmpLen] % \int_{0}^{\phi} \frac{\sin^2 \phi}{\Delta^3}\, d\phi &= \frac{1}{1 - k^2} \left( \frac{E - (1 - k^2)F}{k^2} - \frac{\sin\phi \cos\phi}{\Delta} \right); \\[\TmpLen] % \int_{0}^{\phi} \frac{\cos^2 \phi}{\Delta^3}\, d\phi &= \frac{F - E}{k^2} + \frac{\sin\phi \cos\phi}{\Delta}. \end{align*} %% -----File: 022.png---Folio 16------- \Chapter{II}{Elliptic Functions.} \begin{DPgather*} \lintertext{\indent\First{Let}} u = \int_0^\phi \frac{d\phi}{\sqrt{1 - k^2 \sin^2 \phi}}. \end{DPgather*} $\phi$\footnotemark~is called the \emph{amplitude} corresponding to the \emph{argument}~$u$, and is written \footnotetext{Legendre.} \[ \phi = \am (u, k) = \am u. \] The quantity~$k$ is called the \emph{modulus}, and the expression $\sqrt{1 - k^2 \sin^2 \phi}$ is written\footnotemark[1] \[ \sqrt{1 - k^2 \sin^2 \phi} = \Delta \am u = \Delta \phi, \] and is called the \emph{delta function} of the amplitude of~$u$, or \emph{delta of~$\phi$}, or simply \emph{delta}~$\phi$. $u$~can be written \[ u = F(k, \phi). \] The following abbreviations are used: \begin{align*} \sin \phi &= \sin \am u = \sn\footnotemark u; \\ \cos \phi &= \cos \am u = \cn\footnotemark[2] u; \\ \Delta \phi &= \Delta \am u = \dn\footnotemark[2] u = \Delta u; \\ \tan \phi &= \tan \am u = \tn u. \end{align*} \footnotetext{\textit{Gudermann}, in his ``Theorie der Modularfunctionen'': Crelle's Journal, Bd.~18.}% Let $\phi$ and~$\psi$ be any two arbitrary angles, and put \begin{align*} \phi &= \am u;\\ \psi &= \am \nu.\\ \end{align*} %% -----File: 023.png---Folio 17------- %[Illustration] \begin{wrapfigure}{r}{1.25in} \Input[1in]{023a} \end{wrapfigure} In the spherical triangle~$ABC$ we have from Trigonometry, $\DPtypo{c}{\mu}$~and~$C$ being constant, \[ \frac{d\phi}{\cos B} + \frac{d\psi}{\cos A} = 0. \] Since $C$~and~$\DPtypo{c}{\mu}$ are constant, denoting by~$k$ an arbitrary constant, we have \[ \Tag{(1)} \frac{\sin C}{\sin \mu} = k. \] But \[ \sin A = \sin\psi \frac{\sin B}{\sin \phi} = \sin\psi \frac{\sin C}{\sin \mu} = k \sin\psi. \] Whence \[ \cos A = \sqrt{1 - \sin^{2}A} = \sqrt{1 - k^{2} \sin^{2} \psi}. \] In the same manner \[ \cos B = \sqrt{1 - \sin^{2}B} = \sqrt{1 - k^{2} \sin^{2} \phi}. \] Substituting these values, we get \[ \Tag{(2)} \frac{d\phi}{\sqrt{1 - k^{2} \sin^{2} \phi}} + \frac{d\psi}{\sqrt{1 - k^{2} \sin^{2} \psi}} = 0. \] Integrating this, there results \[ \Tag{(3)} \int_0^\phi \frac{d\phi}{\sqrt{1 - \DPtypo{k_2}{k^2} \sin^{2}\phi}} + \int_0^\psi \frac{d\psi}{\sqrt{1 - k^2 \sin^2\psi}} = \text{const}. \] When $\phi = 0$, we have $\psi = \mu$, and therefore the constant must be of the form \[ \int_0^\mu \frac{d\phi}{\sqrt{1 - k^2 \sin^2 \phi}}, \] %% -----File: 024.png---Folio 18------- whence \[ \Tag{(4)} \int_0^\phi \frac{d \phi}{\sqrt{1 - k^2 \sin^2 \phi}} + \int_0^\psi \frac{d \psi}{\sqrt{1 - k^2 \sin^2 \psi}} = \int_0^\mu \frac{d \phi}{\sqrt{1 - k^2 \sin^2 \phi}}, \] or \[ u + \nu = m; \] and evidently the amplitudes $\phi$,~$\psi$, and~$\mu$ can be considered as the three sides of a spherical triangle, and the relations between the sides of this spherical triangle will be the same as those between $\phi$,~$\psi$, and~$\mu$. %[Illustration] \begin{wrapfigure}{l}{1.125in} \Input{024a} \end{wrapfigure} But the sides of this triangle have imposed upon them the condition \[ \frac{\sin C}{\sin \mu} = k; \] and since $k < 1$, we must have $\mu > C$, which requires that one of the angles of the triangle shall be obtuse and the other two acute. In the figure, let $C$~be an acute angle of the triangle~$ABC$, and $PQ$~the equatorial great circle of which $C$~is the pole. %[Illustration] \ifthenelse{\boolean{ForPrinting}}{% \begin{wrapfigure}[11]{r}{2.125in} \vspace{-1.5\baselineskip} \hfill\Input[2in]{025a} \vspace{1.5\baselineskip} \end{wrapfigure} }{% \begin{wrapfigure}{r}{2.125in} \hfill\Input[2in]{025a} \end{wrapfigure} } The arc~$PQ$ will be the measure of the angle~$C$. Let $AG$~and~$AH$ be the arcs of two great circles perpendicular respectively to $CQ$ and~$CP$. They will of course be shorter than~$PQ$. Hence $AB = \mu$ must intersect~$CQ$ in points between $CG$ and~$HQ$, since $\mu > (C=PQ)$. In any case either $A$~or~$B$ will be obtuse according as $B$~falls between $QH$ or~$CG$ respectively; and the other angle will be acute. In the case where $C$~is an obtuse angle, it will be easily seen that the angle at~$A$ must be acute, since the great circle~$AD$, perpendicular to~$CP$, intersects~$PQ$ in~$D$, $PD$~being a quadrant. The same remarks apply to the angle~$B$. Hence, in either %% -----File: 025.png---Folio 19------- case, one of the angles of the triangle is obtuse and the other two are acute, as a result of the condition \[ \frac{\sin C }{\sin \mu} = k < 1. \] From Trigonometry we have \[ \cos \mu = \cos \phi \cos \psi + \sin \phi \sin \psi \cos C; \] and since the angle~$C$ is obtuse, \[ \cos C = - \sqrt{1- \sin^2C} = -\sqrt{1 - k^2 \sin^2 \mu}, \] and \[ \Tag{(5)} \cos \mu = \cos \phi \cos \psi - \sin \phi \sin \psi \sqrt{1 - k^2 \sin^2 \mu}, \] the relation sought. The spherical triangle likewise gives the following relations between the sides: \[ \Tag[5st]{(5)^*} \left\{ \begin{aligned} \cos \phi &= \cos \mu \cos \psi + \sin \mu \sin \psi \sqrt{1 - k^2 \sin^2 \phi}; \\ \cos \psi &= \cos \mu \cos \phi + \sin \mu \sin \phi \sqrt{1 - k^2 \sin^2 \psi}. \end{aligned} \right. \] These give, by eliminating $\cos \mu$, \[ \sin \mu = \frac{\cos^2 \psi - \cos^2 \phi} {\sin \phi \cos \psi \Delta \psi - \sin \psi \cos \phi \Delta \phi}; \] which, after multiplying by the sum of the terms in the denominator and substituting $\cos^2 = 1 - \sin^2$, can be written \[ \sin \mu = \frac{(\sin^2 \phi - \sin^2 \psi) (\sin \phi \cos \psi \Delta \psi + \sin \psi \cos \phi \Delta \phi \DPtypo{}{)}} { \sin^2 \phi \cos^2 \psi \Delta^2 \psi - \sin^2 \psi \cos^2 \phi \Delta^2 \phi}. \] Since the denominator can be written \begin{gather*} (\sin^2 \phi - \sin^2 \psi)(1 - k^2 \sin^2 \phi \sin^2 \psi), \\ \Tag{(6)} \sin \mu = \frac{\sin \phi \cos \psi \Delta \psi + \sin \psi \cos \phi \Delta \phi} {1 - k^2 \sin^2 \phi \sin^2 \psi}. \end{gather*} In a similar manner we get \[ \Tag[6st]{(6)^*} \left\{ \begin{aligned} \cos \mu &= \frac{\cos \phi \cos \psi - \sin \phi \sin \psi \Delta \phi \Delta \psi} {1 - k^2 \sin^2 \phi \sin^2 \psi}; \\ % \Delta \mu &= \frac{\Delta \phi \Delta \psi - k^2 \sin \phi \sin \psi \cos \phi \cos \psi} {1 - k^2 \sin^2 \phi \sin^2 \psi}. \end{aligned} \right. \] %% -----File: 026.png---Folio 20------- These equations can also be written as follows: \[ \Tag{(7)} \left\{ \makebox[\linewidth-40pt][l]{$\begin{aligned} \sin \am (u±\nu) &= \frac{\sin \am u \cos \am \nu \Delta \am \nu ± \sin \am \nu \cos \am u \Delta \am u} {1 - k^{2} \sin^{2} \am u \sin^{2} \am \nu}; \\ % \cos \am (u±\nu) &= \frac{\cos \am u \cos \am \nu \mp \sin \am u \sin \am \nu \Delta \am u \Delta \am \nu} {1 - k^{2} \sin^{2} \am u \sin^{2} \am \nu}; \\ % \Delta \am (u±\nu) &= \frac{\Delta \am u \Delta \am \nu \mp k^{2} \sin \am u \sin \am \nu \cos \am u \cos \am \nu} {1 - k^{2} \sin^{2} \am u \sin^{2} \am \nu}; \end{aligned}$} \right. \] or \[ \Tag{(8)} \left\{ \begin{aligned} \sn (u±\nu) &= \frac{\sn u \cn \nu \dn \nu ± \sn \nu \cn u \dn u} {1 - k^{2} \sn^{2} u \sn^{2} \nu}; \\ % \cn (u±\nu) &= \frac{\cn u \cn \nu \mp \sn u \sn \nu \dn u \dn \nu} {1 - k^{2} \sn^{2} u \sn ^{2} \nu}; \\ % \dn (u±\nu) &= \frac{\dn u \dn \nu \mp k^{2} \sn u \sn \nu \cn u \cn \nu} {1 - k^{2} \sn^{2} u \sn^{2} \nu}. \end{aligned} \right. \] Making $u = \nu$, we get from the upper sign \[ \Tag{(9)} \left\{ \begin{aligned} \sn 2u &= \frac{2 \sn u \cn u \dn u}{1 - k^{2} \sn^{4} u}; \\ \cn 2u &= \frac{\cn^{2}u - \sn^{2}u \dn^{2}u}{1 - k^{2} \sn^{4}u} = \frac{1 - 2\sn^{2}u + k^{2}\sn^{4}u}{1 - k^{2}\sn^{4}u}; \\ \dn 2u &= \frac{\dn^{2}u - k^{2}\sn^{2}u \cn^{2}u}{1 - k^{2}\sn^{4}u} = \frac{1 - 2k^{2}\sn^{2}u + k^{2}\sn^{4}u}{1 - k^{2}\sn^{4}u}. \end{aligned} \right. \] From these \[ \Tag{(10)} \left\{ \begin{aligned} 1 - \cn 2u &= \frac{2 \cn^{2} u \dn^{2} u}{1 - k^{2} \sn^{4} u}; \\ 1 + \cn 2u &= \frac{2 \cn^{2} u}{1 - k^{2} \sn^{4} u}; \\ 1 - \dn \PadTo[l]{2u}{u} &= \frac{2k^{2} \sn^{2} u \cn^{2} u}{1 - k^{2} \sn^{4} u}; \\ 1 + \dn \PadTo[l]{2u}{u} &= \frac{2 \dn^{2} u}{1 - k^{2} \sn^{4} u}; \end{aligned} \right. \] %% -----File: 027.png---Folio 21------- and therefore \[ \Tag{(11)} \left\{ \begin{aligned} \sn^{2} u &= \frac{1 - \cn 2u}{1 + \dn 2u}; \\ \cn^{2} u &= \frac{\dn 2u + \cn 2u}{1 + \dn 2u}; \\ \dn^{2} u &= \frac{1 - k^{2} + \dn 2u + k^{2}\cn 2u}{1 +\dn 2u}; \end{aligned} \right. \] and by analogy \[ \Tag{(12)} \left\{ \begin{aligned} \sn \dfrac{u}{2} &= \sqrt{\frac{1 - \cn u}{1 + \dn u}}; \\ \cn \dfrac{u}{2} &= \sqrt{\frac{\cn u + \dn u}{1 + \dn u}}; \\ \dn \dfrac{u}{2} &= \sqrt{\frac{1 - k^{2} + \dn u + k^{2} \cn u}{1 + \dn u}}. \end{aligned} \right. \] In \Eqref{equations}{}{(7)} making $u = \nu$, and taking the lower sign, we have \[ \Tag{(13)} \left\{ \begin{aligned} \sn 0 &= 0; \\ \cn 0 &= 1; \\ \dn 0 &= 1. \end{aligned} \right. \] Likewise, we get by making $u = 0$, \[ \Tag{(14)} \left\{ \begin{aligned} \sn (-u) &= -\sn u; \\ \cn (-u) &= +\cn u; \\ \dn (-u) &= \dn u. \end{aligned} \right. \] %% -----File: 028.png---Folio 22------- \Chapter{III}{Periodicity of the Functions.} \First{When} the elliptic integral \[ \int_{0}^{\phi} \frac{d \phi}{\sqrt{1 - k^{2} \sin^{2} \phi}} \] has for its amplitude~$\dfrac{\pi}{2}$, it is called, following the notation of Legendre, the \emph{complete} function, and is indicated by~$K$, thus: \[ K = \int_{0}^{\frac{\pi}{2}} \frac{d \phi}{\sqrt{1-k^{2} \sin^{2} \phi}}. \] When~$k$ becomes the complementary modulus,~$k'$, (see \Eqref{eq.}{IV}{\DPtypo{4}{(4)}}, Chap.\ IV,) the corresponding complete function is indicated by~$K'$, thus: \[ K' = \int_{0}^{\frac{\pi}{2}} \frac{d \phi}{\sqrt{1-k'^{2} \sin^{2} \phi}}. \] From these, evidently, \[ \am (K, k) = \frac{\pi}{2},\qquad \am (K', k') = \frac{\pi}{2}. \] \[ \Tag{(1)} \left\{ \begin{aligned} \sn (K, k) &= 1; \\ \cn (K, k) &= 0; \\ \dn (K, k) &= k'. \end{aligned} \right. \] %% -----File: 029.png---Folio 23------- From \Eqref{eqs.}{II}{(7)},~\Eqref{}{II}{(8)}, and~\Eqref{}{II}{(9)}, Chap.~II, we have, by the substitution of the values of~$\sn (K) = 1$, $\cn (K) = 0$, $\dn (K) = k'$, \[ \Tag{(2)} \left\{ \begin{aligned} \sn 2K &= 0; \\ \cn 2K &= -1; \\ \dn 2K &= 1. \end{aligned} \right. \] These equations, by means of \Eqref{}{II}{(1)},~\Eqref{}{II}{(2)}, and~\Eqref{}{II}{(3)} of Chap.~II, give \[ \Tag{(3)} \left\{ \begin{aligned} \sn (u+2K) &= - \sn u; \\ \cn (u+2K) &= -\cn u; \\ \dn (u+2K) &= \dn u; \end{aligned} \right. \] and these, by changing $u$ into~$u+2K$, give \[ \Tag{(4)} \left\{ \begin{aligned} \sn (u+4K) &= \sn u; \\ \cn (u+4K) &= \cn u; \\ \dn (u+4K) &= \dn u. \end{aligned} \right. \] From these equations it is seen that the elliptic functions $\sn$,~$\cn$,~$\dn$, are periodic functions having for their period~$4K$. Unlike the period of trigonometric functions, this period is not a fixed one, but depends upon the value of~$k$, the modulus. From the Integral Calculus we have \begin{align*} \int_{0}^{n \frac{\pi}{2}} \frac{d \phi}{\Delta \phi} &= \int_{0}^{\frac{\pi}{2}} \frac{d \phi}{\Delta \phi} + \int_{\frac{\pi}{2}}^{\pi} \frac{d \phi}{\Delta \phi} + \int_{\pi}^{\frac{3\pi}{2}} \frac{d \phi}{\Delta \phi} + \cdots + \int_{(n-1)\frac{\pi}{2}}^{n \frac{\pi}{2}} \frac{d \phi}{\Delta \phi} \\ &= n \int_{0}^{\frac{\pi}{2}} \frac{d \phi}{\Delta \phi} = nK; \end{align*} from which we see that \begin{DPalign*} n \frac{\pi}{2} &= \am (nK); \\ %% -----File: 030.png---Folio 24------- \intertext{or, since $\dfrac{\pi}{2} = \am K$,} \am (nK) &= n · \am K, \\ \intertext{and} n \pi &= \am (2nK), \\ \lintertext{and also} n \pi &= 2n \am K. \end{DPalign*} In the case of an Elliptic Integral with the arbitrary angle~$\alpha$, we can put \[ \DPtypo{d}{\alpha} = n \pi ± \beta, \] where $\beta$ is an angle between $0$~and~$\dfrac{\pi}{2}$, the upper or the lower sign being taken according as $\dfrac{\pi}{2}$ is contained in~$\alpha$ an even or an uneven number of times. In the first case we have \[ \int_0^{n\pi+\beta} \frac{d \phi}{\Delta \phi} = \int_0^{n\pi} \frac{d \phi}{\Delta \phi} + \int_{n\pi}^{n\pi+\beta} \frac{d \phi}{\Delta \phi}; \] or, putting $\phi_{1} = \DPtypo{}{\phi} - n \pi$, \[ \int_0^{n\pi+\beta} \frac{d \phi}{\Delta \phi} = 2nK + \int_0^\beta \frac{d \phi_{1}}{\Delta \phi_{1}}. \] In the second case \[ \int_0^{n\pi-\beta} \frac{d \phi}{\Delta \phi} = \int_0^{n\pi} \frac{d \phi}{\Delta \phi} - \int_{n\pi-\beta}^{n\pi} \frac{d \phi}{\Delta \phi}; \] or, putting $\phi_{1} = n \pi - \phi$, \[ \int_0^{n\pi-\beta} \frac{d \phi}{\Delta \phi} = 2nK - \int_0^\beta \frac{d \phi_{1}}{\Delta \phi_{1}}; \] %% -----File: 031.png---Folio 25------- or in either case, \[ \int_0^{n\pi±\beta} \frac{d \phi}{ \Delta \phi} = 2nK ± \int_0^\beta \frac{d \phi_{1} }{ \Delta \phi_{1}}. \] Thus we see that the Integral with the general amplitude~$\alpha$ can be made to depend upon the complete integral~$K$ and an Integral whose amplitude lies between $0$~and~$\dfrac{\pi}{2}$. Put now \[ \int_0^\beta \frac{d \phi_{1} }{ \Delta \phi_1} = u,\qquad \beta = \am u. \] This gives \begin{DPalign*} \int_0^{n\pi±\beta} \frac{d \phi }{ \Delta \phi} &= 2nK ± u,\\ \lintertext{or} \am (2nK ± u) &= n \pi ± \beta\\ \Tag{(5)} &= n\pi ± \am u\\ \Tag{(6)} &= 2n · \am K ± \am u;\\ \lintertext{or, since} \am (-z) &= -\am z,\\ \am (u ± 2nK) &= \am u ± n \pi\\ &= \am u ± 2n · \am K.\\ \end{DPalign*} Taking the sine and cosine of both sides, we have \begin{align*} \sn (u + 2nK) &= ± \sn u;\\ \cn (u + 2nK) &= ± \cn u; \end{align*} the upper or the lower sign being taken according as $n$~is even or odd. By giving the proper values to~$n$ we can get the same results as in \Eqref{equations}{}{(3)} and~\Eqref{}{}{(4)}. Putting $n = 1$ in \Eqref{eq.}{}{(5)}, we have \begin{align*} \sn (2K - u) &= \sin \pi \cn u - \cos \pi \sn u\\ \Tag{(7)} &= \sn u. \end{align*} %% -----File: 032.png---Folio 26------- Elliptic functions also have an imaginary period. In order to show this we will, in the integral \[ \int_0^\phi \frac{d \phi}{\Delta \phi}, \] assume the amplitude as imaginary. Put \[ \sin \phi = i \tan \psi. \] From this we get \[ \Tag{(8)} \left\{ \begin{aligned} \cos \phi &= \frac{1}{\cos \psi}; \\ \Delta \phi &= \frac{\sqrt{1 - k'^{2} \sin^{2} \psi}}{\cos \psi} = \frac{\Delta (\psi, k')}{\cos \psi}; \\ d \phi &= i \frac{d \psi}{\cos \psi}. \end{aligned} \right. \] From these, since $\phi$~and~$\psi$ vanish simultaneously, we easily get \begin{align*} \int_0^\phi \frac{d \phi}{\Delta \phi} &= i \int_0^\psi \frac{d \psi}{\Delta (\psi, k')}. \\ \intertext{Put} \int_0^\psi \frac{d \psi}{\Delta (\psi, k')} &= u \quad \text{and} \quad \psi = \am (u, k'), \\ \intertext{whence} \int_0^\phi \frac{d \phi}{\Delta \phi} &= iu \quad \text{and} \quad \phi = \am (iu); \end{align*} and these substituted in \Eqref{Eq.}{}{(8)} give \[ \Tag{(9)} \left\{ \begin{aligned} \sn iu &= i \tn (u, k'); \\ \cn iu &= \frac{1}{\cn (u, k')}; \\ \dn iu &= \frac{\dn (u, k')}{\cn (u, k')}. \end{aligned} \right. \] %% -----File: 033.png---Folio 27------- By assuming \[ \int_0^\psi \frac{d \psi}{\Delta (\psi, k')} = iu \quad \text{and}\quad \int_0^\phi \frac{d \phi}{\Delta \phi} = -u, \] we get \begin{align*} \sn (-u) &= i \tn (iu, k'), \\ \cn (-u) &= \frac{1}{\cn(iu, k')}, \\ \dn (-u) &= \frac{\dn (iu, k')}{\cn (iu, k')}; \end{align*} or, from \Eqref{eq.}{II}{(14)}, Chap.~II, \[ \Tag{(10)} \left\{ \begin{aligned} \sn u &= -i \tn (iu, k'); \\ \cn u &= \frac{1}{\cn (iu, k')}; \\ \dn u &= \frac{\dn (iu, k')}{\cn (iu, k')}. \end{aligned} \right. \] From \Eqref{eqs.}{II}{(7)}, Chap.~II, making $\nu = K$, we get, since $\sn K = 1$, $\cn K = 0$, $\dn K = k'$, \[ \Tag{(11)} \left\{ \begin{aligned}%[** PP: Moved \mp out of numerator in second equation] \sn (u ± K) &= ± \frac{\cn u \dn u}{1 - k^{2} \sn^{2} u} = ± \dfrac{\cn u}{\dn u}; \\ \cn (u ± K) &= \mp \frac{\sn u \dn uk'}{\dn^{2} u} = \mp \frac{k' \sn u}{\dn u}; \\ \dn (u ± K) &= + \frac{k'}{\dn u}. \end{aligned} \right. \] In these equations, changing $u$ into~$iu$, we get, by means of \Eqref{eqs.}{}{(9)}, \[ \Tag{(12)} \left\{ \begin{aligned} \sn (iu ± K) &= ± \frac{1}{\dn (u, k')}; \\ \cn (iu ± K) &= \mp \frac{ik' \sn (u, k')}{\dn (u, k')}; \\ \dn (iu ± K) &= + \frac{k' \cn (u, k')}{\dn (u, k')}. \end{aligned} \right. \] %% -----File: 034.png---Folio 28------- Putting now in \Eqref{eqs.}{}{(9)} $u ± K'$ instead of~$u$, and making use of \Eqref{eqs.}{}{(10)}, and interchanging $k$~and~$k'$, we have \[ \Tag{(13)} \left\{ \begin{aligned} \sn (iu ± iK') &= - \frac{i \cn (u, k')}{k \sn (u, k')}; \\ \cn (iu ± iK') &= \mp \frac{\dn (u, k')}{k \sn (u, k')}; \\ \dn (iu ± iK') &= \mp \frac{1}{\sn (u, k')}. \end{aligned} \right. \] Substituting in these~$-iu$ in place of~$u$, we get, by means of \Eqref{eqs.}{II}{(9)} and \Eqref{eqs.}{II}{(14)} of Chap.~II, \[ \Tag{(14)} \left\{ \begin{aligned} \sn (u ± iK') &= \frac{1}{k \sn u}; \\ \cn (u ± iK') &= \mp \frac{i \dn u}{k \sn u}; \\ \dn (u ± iK') &= \mp i \cot \am u. \end{aligned} \right. \] In these equations, putting $u + K$ in place of~$u$, we get \[ \Tag{(15)} \left\{ \begin{aligned} \sn (u + K ± iK') &= + \frac{\dn u}{k \cn u}; \\ \cn (u + K ± iK') &= \mp \frac{ik'}{k \cn u}; \\ \dn (u + K ± iK') &= ± ik' \tn u. \end{aligned} \right. \] Whence for $u = 0$ we get \[ \Tag{(16)} \left\{ \begin{aligned} \sn (K ± iK') &= \frac{1}{k}; \\ \cn (K ± iK') &= \mp \frac{ik'}{k}; \\ \dn (K ± iK') &= 0. \end{aligned} \right. \] %% -----File: 035.png---Folio 29------- If in \Eqref{eqs.}{}{(14)} we put $u = 0$, we see that as $u$~approaches zero, the expressions \Pagelabel{29} \[ \sn (± iK'), \quad \cn (± iK'), \quad \dn (± iK') \] approach infinity. We see from what has preceded that Elliptic Functions have two periods, one a real period, and one an imaginary period. In the former characteristic they resemble Trigonometric Functions, and in the latter Logarithmic Functions. On account of these two periods they are often called Doubly Periodic Functions. Some authors make this double periodicity the starting-point of their investigations. This method of investigation gives some very beautiful results and processes, but not of a kind adapted for an elementary work. It will be noticed that the Elliptic Functions $\sn u$,~$\cn u$, and~$\dn u$ have a very close analogy to trigonometric functions, in which, however, the independent variable~$u$ is not an angle, as it is in the case of trigonometric functions. Like Trigonometric Functions, these Elliptic Functions can be arranged in tables. These tables, however, require a double argument, viz., $u$~and~$k$. In \Chapref{Chap.}{IX} these functions are developed into series, from which their values may be computed and tables formed. No complete tables have yet been published, though they are in process of computation. %% -----File: 036.png---Folio 30------- \Chapter{IV}{Landen's Transformation} %[Illustration] \begin{wrapfigure}[6]{l}{2in} \vspace{-\baselineskip} \Input[2in]{036a} \vspace{\baselineskip} \Pagelabel{30}% \end{wrapfigure} \First{Let} $AB$~be the diameter of a circle, with the centre at~$O$, the radius $AO = r$, and $C$~a fixed point situated upon~$OB$, and $OC = k_{0}r$. Denote the angle~$PBC$ by~$\phi$, and the angle~$PCO$ by~$\phi_{1}$. Let $P'$~be a point indefinitely near to~$P$. Then \[ \frac{PP'}{PC} = \frac{\sin PCP'}{\sin PP'C} = \frac{\sin PCP'}{\cos OP'C}. \] But $PP' = 2r\, d\phi$, and $\sin PCP' = PCP' = d \phi_{1}$; therefore \[ \frac{2r\, d\phi}{PC} = \frac{d \phi_{1}}{\cos OP'C}. \] But \begin{align*} \overline{PC}^{2} &= r^{2} + r^{2}k_{0}^{2} + 2r^{2}k_{0} \cos 2 \phi \\ &= (r + rk_{0})^{2} \cos^{2} \phi + (r - rk_{0})^{2} \sin^{2} \phi; \end{align*} \NegMathSkip \begin{DPalign*} \lintertext{also} r^{2} \cos^{2} OP'C &= r^{2} - r^{2} \sin^{2} OP'C \\ &= r^{2} - r^{2}k_{0}^{2} \sin^{2} \phi_{1}. \end{DPalign*} Therefore %[** PP: Next two equations aligned in original] \[ \frac{2\, d\phi}{\sqrt{(r + rk_{0})^{2} \cos^{2} \phi + \DPtypo{(r - rk_{0})}{(r - rk_{0})^{2}} \sin^{2} \phi}} = \frac{d \phi_{1}}{\sqrt{r^{2} - r^{2}k_{0}^{2} \sin^{2} \phi_{1}}}, \] which can be written \[ \frac{2}{r + rk_{0}}\, \frac{d \phi}{\sqrt{1 - \dfrac{4k_{0}r^{2}}{(r + rk_{0})^{2}} \sin^{2} \phi}} = \frac{1}{r}\, \frac{d \phi_{1}}{\sqrt{1 - k_{0}^{2} \sin^{2} \phi_{1}}}, \] %% -----File: 037.png---Folio 31------- Putting \[ \Tag{(1)} \frac{4k_{0}r^{2}}{(r + rk_{0})^{2}} = \frac{4k_{0}}{(1 + k_{0})^{2}} = k^{2}, \] we have \[ \Tag{(2)} \int_{0}^{\phi} \frac{d \phi}{\sqrt{1 - k^{2} \sin^{2} \phi}} = \frac{1 + k_{0}}{2} \int_{0}^{\phi_{1}} \frac{d \phi_{1}}{\sqrt{1 - k_{0}^{2} \sin^{2} \phi_{1}}}; \] no constant being added because $\phi$ and~$\phi_{1}$ vanish simultaneously; $\phi$ and~$\phi_{1}$ being connected by the equation \[ \Tag{(3)} \frac{\sin OPC}{\sin OCP} = \frac{\sin (2 \phi - \phi_{1})}{\sin \phi_{1}} = \frac{rk_{0}}{r} = k_{0}. \] From the value of~$k^{2}$ we have \[ \Tag{(4)} 1 - k^{2} = k'^{2} = \frac{(1 - k_{0})^{2}}{(1 + k_{0})^{2}}, \] and therefore \[ \Tag{(5)} k_{0} = \frac{1 - k'}{1 + k'}. \] $k'$~is called the \emph{complementary modulus}, and is evidently the minimum value of~$\Delta \phi$, the value of~$\Delta \phi$ when~$\phi = 90°$: \[ \sqrt{1 - k^{2}} = k'. \] From \Eqref{eq.}{}{(1)} we evidently have $k > k_{0}$, for, putting \Eqref{eq.}{}{(1)} in the form \[ \frac{k^{2}}{k_{0}^{2}} = \frac{4}{k_{0} + 2k_{0}^{2} + k_{0}^{3}}, \] we see that if $k_{0} = 1$, then $k = k_{0}$, but as $k_{0} < 1$, always, as is evident from the figure, $k$~must be greater than~$k_{0}$. It is also evident, from the figure, that~$\phi_{1} > \phi$. Or it may be deduced directly from \Eqref{eq.}{}{(3)}. Since $k < 1$, we can write \[ k = \sin \theta, \qquad k' = \sqrt{1 - k^{2}} = \cos \theta. \] %% -----File: 038.png---Folio 32------- Substituting in \Eqref{eq.}{}{(5)}, we have \[ k_{0} = \frac{1 - k'}{1 + k'} = \tan^2 \tfrac{1}{2} \theta, \] and we can write \[ k_{0} = \sin \theta_{0}, \qquad k_{1}' = \sqrt{1 - k_{0}^2} = \cos \theta_{0}. \] From \Eqref{eq.}{}{(5)} we have \[ 1 + k_{0} = \frac{2}{1 + k'}. \] Substituting the value of~$k_{0}$ in that for~$k_{1}'$, we get \[ k_{1}' = \frac{2\sqrt{k'}}{1 + k'}. \] We also have \begin{DPalign*} %[** aligning next group] 2 \phi - \phi_{1} & = \phi - (\phi_{1} - \phi) \\ \phi_{1} & = \phi + (\phi_{1} - \phi), \\ \lintertext{and, \Eqref{eq.}{}{(3)},} \sn (2\phi - \phi_{1}) &= k_{0} \sin \phi_{1}, \end{DPalign*} becomes \begin{multline*} %[** PP: Moving = to second line] \sin \phi \cos (\phi_{1} - \phi) - \cos \phi \sin (\phi_{1} - \phi) \\ = k_{0} \sin \phi \cos (\phi_{1} - \phi) + k_{0} \cos \phi \sin (\phi_{1} - \phi), \end{multline*} or \[ \tan \phi - \tan (\phi_{1} - \phi) = k_{0} \tan \phi + k_{0} \tan (\phi_{1} - \phi), \] or \begin{align*} \tan (\phi_{1} - \phi) &= \frac{1 - k_{0}}{1 + k_{0}} \tan \phi \\ &= k' \tan \phi. \end{align*} Collecting these results, we have \begin{align*} \Tag{(6)} k &= \frac{2\sqrt{k_{0}}}{1 + k_{0}} = \sin \theta; \\ \Tag{(7)} k_{0} &= \frac{1 - k'}{1 + k'} = \sin \theta_{0} = \tan^{2} \tfrac{1}{2} \theta; \end{align*} %% -----File: 039.png---Folio 33------- \begin{align*} \Tag{(8)} k_{1}' &= \frac{2\sqrt{k'}}{1 + k'} = \cos \theta_{0}; \\ \Tag{(9)} k' &= \frac{1 - k_{0}}{1 + k_{0}} = \cos \theta; \\ \Tag{(10)} 1 + k_{0} &= \frac{2}{1 + k'} = \frac{2\sqrt{k_{0}}}{k} = \frac{k_{1}'}{\sqrt{k'}} = \frac{1}{\cos^{2} \frac{1}{2} \theta}; \end{align*} \begin{align*} \Tag{(11)} \sin (2 \phi - \phi_{1}) &= k_{0} \sin \phi_{1}; \\ \Tag{(12)} \tan (\phi_{1} - \phi) &= k' \tan \phi; \end{align*} \begin{align*} \Tag{(13)} \int_{0}^{\phi} \frac{d \phi}{\Delta (k, \phi)} &= \frac{1 + k_{0}}{2} \int_{0}^{\phi_{1}} \frac{d \phi_{1}}{\Delta (k_{0}, \phi_{1})}; \\ \Tag{(14)} k &= \sqrt{1 - k'^{2}}, \quad k' = \sqrt{1 - k^{2}}. \end{align*} Upon examination it will easily appear that $k$ and~$k_{0}$, and $\theta$ and~$\theta_{0}$, are the first two terms of a decreasing series of moduli and angles; $k'$~and~$k_{1}'$, and $\phi$~and~$\phi_{1}$, of an increasing series; the law connecting the different terms of the series being deduced from \Eqref{eqs.}{}{(6)} to~\Eqref{}{}{(12)}. By repeated applications of these equations we would get the following series of moduli and amplitudes: \[ \renewcommand{\arraystretch}{\SMSTR}% \begin{array}{l*{2}{>{\qquad}l}} k_{0n} = 0_{(n = \infty)} & k_{n}' = 1_{(n = \infty)} & \phi_{n} \\ \PadTo{k_{00}}{\vdots} & \PadTo{k'_n}{\vdots} & \PadTo{\phi_n}{\vdots} \\ k_{00} & k_{2}' & \phi_{2} \\ k_{0} & k_{1}' & \phi_{1} \\ k & k' & \phi \end{array} \] The upper limit of the one series of moduli is~$1$, and the lower limit of the other series is~$0$, as is indicated. $k$~and~$k'$, %% -----File: 040.png---Folio 34------- which are bound by the relation $k^{2} + k'^{2} = 1$, are called the \emph{primitives} of the series. \begin{Remark} It will be noticed that the successive terms of a decreasing series are indicated by the sub-accents $0, 00, 03, 04, \ldots 0n$; and the successive terms of an increasing series by the sub-accents $1, 2, 3, \ldots n$. \end{Remark} Again, by application of these equations, we can form a new series running up from~$k$, viz., $k_{1}, k_{2}, k_{3}, \ldots k_{n} = 1_{(n = \infty)}$; and also a new series running down from~$k'$, viz., $k_{0}', k'_{00}, \ldots \DPtypo{k_{0n}}{k_{0n}'} = 0_{(n = \infty)}$. So also with~$\phi$. Collecting these series, we have \[ \renewcommand{\arraystretch}{\SMSTR}% \begin{array}{l@{}*{2}{p{1in}l}} k_{0n} \rlap{$ = 0$} && k_{n}' \rlap{$ = 1$} && \phi_{n} \\ \PadTo{k_{00}}{\vdots} && \PadTo{k'_n}{\vdots} && \PadTo{\phi_n}{\vdots} \\ k_{02} && k_{2}' && \phi_{2} \\ k_{0} && k_{1}' && \phi_{1} \\ k & \Dots{1} & k' & \Dots{1} & \phi \\ k_{1} && k_{0}' && \phi_{0} \\ k_{2} && k'_{00}&& \phi_{00} \\ \PadTo{k_{00}}{\vdots} && \PadTo{k'_n}{\vdots} && \PadTo{\phi_n}{\vdots} \\ k_{n} \rlap{$ = 1$} && k'_{0n} \rlap{$ = 0$} && \phi_{0n}=0 \end{array} \] \begin{Remark} In practice it will be found that generally $n$ will not need to be very large in order to reach the limiting values of the terms, often only two or three terms being needed. \end{Remark} Applying \Eqref{eqs.}{}{(7)}, \Eqref{}{}{(12)},~\Eqref{}{}{(13)}, and~\Eqref{}{}{(14)} repeatedly, we get \[ \Tag[14sub1]{(14_{1})} \left\{\begin{array}{ll} k=\sin \theta, & k' = \cos \theta; \\ k_{0} = \dfrac{1-k'}{1+k'} = \tan^{2} \frac{1}{2} \theta = \sin \theta_{0}, \qquad & k_{1}' = \cos \theta_{0}; \\ k_{00} = \tan^{2} \frac{1}{2} \theta_{0} = \sin \theta_{00}, & k_{2}' = \cos \theta_{00}; \\ k_{03} = \tan^{2} \frac{1}{2} \theta_{00} = \sin \theta_{03}, & k_{3}' = \cos \theta_{03}; \\ \Dots{2} \\ k_{0n} = \tan^{2} \frac{1}{2} \theta_{0(n-1)} = \sin \theta_{0n}, & k_{n}' = \cos \theta_{0n}. \end{array}\right. \] %% -----File: 041.png---Folio 35------- \begin{align*} \Tag[14sub2]{(14_2)} &\left\{ \begin{array}{l} \tan (\phi_{1} - \phi) = k' \tan \phi;\\ \tan (\phi_{2} - \phi_{1}) = k_{1}' \tan \phi_{1};\\ \tan (\phi_{3} - \phi_{2}) = k_{2}' \tan \phi_{2};\\ \Dots{1} \\ \tan (\phi_{n} - \phi_{n - 1}) = k'_{(n - 1)} \tan \phi_{n - 1}. \end{array} \right. \\ % \Tag[14sub3]{(14_3)} &\left\{ \begin{array}{r@{}l} F(k, \phi) &{}= \dfrac{1 + k_{0}}{2} F(k_{0}, \phi_{1});\\ F(k_{0}, \phi_{1}) &{}= \dfrac{1 + k_{00}}{2} F(k_{00}, \phi_{2});\\ F(k_{00}, \phi_{2}) &{}= \dfrac{1 + k_{03}}{2} F(k_{03}, \phi_{3});\\ \Dots{2} \\ F(k_{0(n - 1)}, \phi_{n - 1}) &{}= \dfrac{1 + k_{0n}}{2} F(k_{0n}, \phi_{n}). \end{array} \right. \end{align*} Multiplying these latter equations together, member by member, we have \[ \Tag{(15)} F(k, \phi) = (1 + k_{0})(1 + k_{00}) \dotsm (1 + k_{0n}) \frac{F(k_{0n}, \phi_{n})}{2^{n}}; \] $k_{0}$,~$k_{00}$,~etc., and $\phi_{1}$,~$\phi_{2}$,~etc., being determined from the preceding equations. From \Eqref{eqs.}{}{(9)} and~\Eqref{}{}{(10)} we get \[ 1 + k_{0} = \frac{1}{\cos^{2} \frac{1}{2} \theta},\qquad 1 + k_{00} = \frac{1}{\cos^{2} \frac{1}{2} \theta_{0}},\quad \text{etc.} \] Substituting these in \Eqref{eq.}{}{(15)}, we get \[ \Tag{(16)} F(k, \phi) = \frac{1}{\cos^{2} \dfrac{\theta}{2} \cos^{2} \dfrac{\theta_{0}}{2} \dotsm \cos^{2} \dfrac{\theta_{0n}}{2}} · \frac{F(k_{0n}, \phi_{n})}{2^{n}}. \] %% -----File: 042.png---Folio 36------- From \Eqref{eqs.}{}{(15)} and~\Eqref{}{}{(10)} we get \[ F(k, \phi) = \sqrt{\frac{k_{1}' k_{2}' k_{3}' \dotsm k_{n}'^{2}}{k'}} · \frac{F(k_{0n}, \phi_{n})}{2^{n}}. \] And this with \Eqref{equations}{}{(8)} and~\Eqref{}{}{(9)} gives \[ \Tag{(17)} F(k, \phi) = \sqrt{\frac{\cos \theta_{0} \cos \theta_{00} \dotsm \cos^{2} \theta_{0n}}{\cos \theta}} · \frac{F(k_{0n}, \phi_{n})}{2^{n}}. \] Applying \Eqref{equation}{}{(13)} to $(k_{1}, \phi_{0})$, $(k_{2}, \phi_{00})$,~etc., we get \[ F(k_{1}, \phi_{0}) = \frac{1 + k}{2} F(k, \phi),\ \text{etc.}; \] but since, \Eqref{eq.}{}{(10)}, \[ \frac{1 + k}{2} = \frac{1}{1 + k_{0}'},\ \text{etc.}, \] these become \[ \begin{array}{r@{}l} F(k, \phi) &{} = (1 + k_{0}') F(k_{1}, \phi_{0}); \\ F(k_{1}, \phi_{0}) &{} = (1 + k'_{00}) F(k_{2}, \phi_{00}); \\ \Dots{2} \\ \llap{$F(k_{n-1}, \phi_{0(n-1)})$} &{} = (1 + k'_{0n}) F(k_{\DPtypo{00}{n}}, \phi_{0n}); \end{array} \] whence \[ \Tag{(18)} F(k, \phi) = (1 + k_{0}')(1 + k'_{00}) \dotsm (1 + k'_{0n})F(k_{n}, \phi_{0n}), \] in which $k_{0}'$, $k_{00}'$,~etc., $k_{1}$, $k_{2}$,~etc., $\phi_{0}$, $\phi_{00}$,~etc., are determined as follows: \begin{DPalign*} \lintertext{\indent Let} k &= \sin \theta, \\ k_{1} & = \sin \theta_{1}. \end{DPalign*} From \Eqref{eq.}{}{(10)}, \[ k_{1} = \frac{2\sqrt{k}}{1 + k} \quad \text{or}\quad \sin \theta_{1} = \frac{2\sqrt{\sin \theta}}{1 + \sin \theta}. \] %% -----File: 043.png---Folio 37------- Solving this equation for~$\sin \theta$, we get \[ \sin \theta = \tan^{2} \tfrac{1}{2} \theta_{1}. \] Hence we can write \begin{align*} \Tag[18sub1]{(18_{1})} &\left\{\begin{array}{l} k = \sin \theta = \tan^{2} \frac{1}{2} \theta_{1}; \\ k_{1} = \sin \theta_{1} = \tan^{2} \frac{1}{2} \theta_{2}; \\ \Dots{1} \\ k_{n} = \sin \theta_{n}. \end{array}\right. \\ \intertext{\indent From \Eqref{equation}{}{(12)} we get} \Tag[18sub2]{(18_{2})} &\left\{\begin{array}{l} \sin (2\phi_{0} - \phi) = k \sin \phi;\footnotemark \\ \sin (2\phi_{00} - \phi_{0}) = k_{1} \sin \phi_{0}; \\ \Dots{1} \\ \rlap{$\sin (2\phi_{0n} - \phi_{0(n-1)}) = k_{n-1} \sin \phi_{0(n-1)}$.} \end{array}\right. \end{align*} \footnotetext{When $\sin \phi = 1$ nearly, $\phi$~is best determined as follows: From \Eqref{eq.}{}{(12)} we have \begin{align*} \tan (\phi - \phi_{0}) &= k_{0}' \tan \phi_{0} \\ &= k_{0}' \tan \phi\ \text{nearly}; \intertext{whence} \phi - \phi_{0} &= Rk_{0}' \tan \phi\ \text{nearly}, \end{align*} $R$~being the radian in seconds, viz.\ $206264''.806$, and $\log R = 5.3144251$. Substituting the approximate value of~$\phi_{0}$, we can get a new approximation. \textit{Example}.\qquad\qquad $\phi_{0} = 82°\ 30'$\qquad\qquad\qquad $k'_{00} = \log^{-1} 5.8757219$ \[ \begin{array}{l<{\qquad\qquad}@{}r@{}>{\qquad}c} \tan 82°\ 30' & 10.8805709 & \\ k'_{00} & 5.8757219 & \\ R & 5.3144251 & \\ \cline{2-2} & 2.0707179 & 117''.684 = 1'.9614 \end{array} \] \begin{DPalign*} \phi_{0} - \phi_{00} & = 1'.9614 \\ \phi_{00} & = 82°\ 28'.0386 \rintertext{1st approximation.} \end{DPalign*} This value gives \begin{DPalign*} \phi_{0} - \phi_{00} &= 117''.1675 = 1'.95279\\ \therefore \phi_{00} &= 82°\ 28'.04721 \rintertext{2d~approximation.}\\ \intertext{\indent This value gives} \phi_{0} - \phi_{00} &= 117''.1698 = 1'.95283\\ \phi_{00} &= 82°\ 28'.04717 \rintertext{3d~approximation.} \end{DPalign*} } %% -----File: 044.png---Folio 38------- To determine $k'_{0}$, $k'_{00}$,~etc., we have \[ \Tag[18sub3]{(18_3)} \left\{ \begin{aligned} k' &= \sin \eta, & k &= \cos \eta;\\ k'_{0} &= \frac{1 - k}{1 + k} = \tan^{2} \tfrac{1}{2} \eta = \sin \eta_{0}, & k_{1} &= \cos \eta_{0};\\ k'_{00} &= \tan^{2} \tfrac{1}{2} \eta_{0} = \sin \eta_{00}, & k_{2} &= \cos \eta_{00};\\ & \quad \PadTo[l]{\tan^{2} \tfrac{1}{2} \eta_{0}}{\quad\text{etc.}} \phantom{{}={}} \PadTo{\sin \eta_{00}}{\quad\text{etc.}} & & \PadTo{\cos \eta_{00}}{\text{etc.}} \end{aligned} \right. \] Or, since $1 + k'_0 = \dfrac{1}{\cos^2 \frac{1}{2} \eta}$,\quad $1 + k'_{00} = \dfrac{1}{\cos^2 \frac{1}{2} \eta_0}$, \text{etc.}, we can put \Eqref{eq.}{}{(18)} in the following form: \[ \Tag{(19)} F(k, \phi) = \frac{1}{\cos^{2} \frac{1}{2}\eta\, \cos^{2} \frac{1}{2}\eta_{0} \dotsm \cos^{2} \frac{1}{2}\eta_{0n}}\, F(k_{n}, \phi_{0n}). \] From \Eqref{equation}{}{(13)} we have \begin{align*} \Tag[19st]{(19)^*} F(k_1, \phi_0) &= \frac{1 + k}{2} F(k, \phi), \\ \intertext{whence} F(k, \phi) &= \frac{2}{1 + k} F(k_1, \phi_0). \end{align*} By repeated applications this gives, after combining, \begin{align*} F(k, \phi) &= \frac{2}{1 + k} · \frac{2}{1 + k_{1}} \dotsm \frac{2}{1 + k_{n - 1}} · F(k_{n}, \phi_{0n}) \\ %% -----File: 045.png---Folio 39------- &= \frac{k_{1}}{\sqrt{k}} · \frac{k_{2}}{\sqrt{k_{1}}} \dotsm \frac{k_{n}}{\sqrt{k_{n-1}}} · F(k_{n}, \phi_{0n}); \end{align*} \NegMathSkip \[ \Tag{(20)} F(k, \phi) = \sqrt{\frac{k_{1} k_{2} \dotsm k_{n}^{2}}{k}} · F(k_{n}, \phi_{0n}); \] $k_{1}$,~$k_{2}$,~etc., being determined by repeated applications of \[ k_{1} = \frac{2\sqrt{k}}{1 + k}, \] or by \Eqref[18sub1]{equations}{}{(18_{1})}. In \Eqref[19st]{equation}{}{(19)^*} let us change $k_{1}$~and~$\phi_{0}$ into $k'$~and~$\phi$ respectively, so that the first member may have for its complete function \[ K' = F(k', \phi). \] Upon examination of \Eqref[19st]{eq.}{}{(19)^*} we see that the modulus in the second member must be the one next less than the one in the first member, that is,~$k_{0}'$; and likewise that the amplitude must be the one next greater than the amplitude in the first member, viz.,~$\phi_{1}$; hence we get \[ F(k', \phi) = \frac{1 + k_{0}'}{2}\, F(k_{0}', \phi_{1}). \] Indicating the complete functions by $K'$~and~$K_{0}'$, we have, since $\phi = \dfrac{\pi}{2}$ when $\phi_{1} = \pi$ (see \Chapref{Chap.}{V}), \[ K' = (1 + k_{0}')K_{0}'; \] and in the same manner, \[ \begin{array}{r@{}l} K_{0}' &{}= (1+k_{00}') K_{00}', \\ K_{00}' &{}= (1+k_{03}') K_{03}', \\ \Dots{2} \\ \llap{$K_{0(n-1)}'$} &{}= (1 + k_{0n}')K_{0n}'; \end{array} \] %% -----File: 046.png---Folio 40------- whence \[ K' = (1 + k_{0}')(1 + k_{00}') \dotsm (1+k_{0n}')K_{0n}'. \] Since \begin{DPgather*} K_{0n}' = \int_{0}^{\frac{\pi}{2}} d \phi = \frac{\pi}{2}, \rintertext{($n =$ limit,)} \end{DPgather*} we have \[ \Tag[20st]{(20)^*} (1 + k_{0}')(1 + k_{00}') \dotsm (1 + k_{0n}') = \frac{2K'}{\pi}. \] From \Eqref[19st]{eq.}{}{(19)^*} we have, since [\Eqref{eq.}{IV}{(10)}, Chap\DPtypo{}{.}~IV] \begin{gather*} \frac{1 + k}{2} = \frac{1}{1 + k_{0}'}, \\ (1 + k_{0}') \int_{0}^{\phi_{0}} \frac{d \phi_{0}}{\Delta (\phi_{0}, k_{1})} = \int_{0}^{\phi} \frac{d \phi}{\Delta (\phi_{1}, k)}; \end{gather*} whence also, since for $\phi_{0} = \dfrac{\pi}{2}$, $\phi = \pi$, \[ \begin{array}{r@{}l} (1 + k_{0}')K_{1} &{}= 2K, \\ (1 + k_{00}')K_{2} &{}= 2K_{1}, \\ \Dots{2} \\ (1 + k_{0n}')K_{n} &{}= \rlap{$2K_{n-1}$,} \end{array} \] and \[ (1 + k_{0}')(1 + k_{00}') \dotsm (1 + k_{0n}')K_{n} = 2^{n}K; \] or \begin{DPalign*} \frac{K_{n}}{2^{n}} &= \frac{K}{(1 + k_{0}')(1 + k_{00}') \dotsm} \rintertext{($n = \infty$)} \\ \Tag{(21)} & = \frac{\pi}{2K_{1}} K. \end{DPalign*} %% -----File: 047.png---Folio 41------- Let us find the limiting value of $F(k_{0n}, \phi_{n})$ in \Eqref{eq.}{}{(15)}. In the equation $\tan (\phi_{n} - \phi_{n-1}) = k_{n-1} \tan \phi_{n-1}$, we see that when $k_{n-1}$~reaches the limit~$1$, then $\phi_{n} - \phi_{n-1} = \phi_{n-1}$ or $\phi_{n} = 2\phi_{n-1}$. Therefore \begin{align*} \frac{\phi_{n}}{2^{n}} &= \frac{2\phi_{n - 1}}{2^{n}} = \frac{\phi_{n-1}}{2^{n - 1}}; \\ % \frac{\phi_{n+1}}{2^{n+1}} &= \frac{2\phi_{n}}{2^{n+1}} = \frac{\phi_{n}}{2^{n}} = \frac{\phi_{n-1}}{2^{n}}; \\ % \frac{\phi_{n+m}}{2^{n+m}} &= \frac{\phi_{n - 1}}{2^{n}} = \text{constant, whatever $m$ may be}. \end{align*} Therefore \Eqref{eq.}{}{(15)} becomes \[ \Tag[21st]{(21)^*} F(k, \phi) = (1 + k_{0})(1 + k_{00}) \dotsm (1 + k_{0n}) \frac{\phi_{n}}{2^{n}}, \] $n$~being whatever number will carry $k_{0}$ and~$\dfrac{\phi_{1}}{2}$ to their limiting values. In the same way, \Eqref{eqs.}{}{(16)} and~\Eqref{}{}{(17)} become \begin{align*} \Tag{(22)} F(k, \phi) &= \frac{1}{\cos^{2} \dfrac{\theta}{2} \cos^{2} \dfrac{\theta_{0}}{2} \dotsm \cos^{2} \dfrac{\theta_{0n}}{2}} · \frac{\phi_{n}}{2^{n}} \\ \Tag{(23)} &= \sqrt{\frac{\cos \theta_{0} \cos \theta_{00} \dotsm \cos^{2} \theta_{0n}}{\cos \theta}} · \frac{\phi_{n}}{2^{n}}, \end{align*} $n - 1$ being the number which makes $k_{n-1}' = 1$. In these last three \DPtypo{equation}{equations} $k_{0}$,~$k_{00}$ are determined by \Eqref[14sub1]{eqs.}{}{(14_{1})}; $\phi_{1}$,~$\phi_{2}$,~etc., by \Eqref[14sub2]{eqs.}{}{(14_{2})}\footnotemark; \footnotetext{Taking for~$\phi_{1} - \phi$, etc., not always the least angle given by the tables, but that which is nearest to~$\phi$.}% $\theta$,~$\theta_{0}$,~etc., by \Eqref[14sub1]{eqs.}{}{(14_{1})}; and $k'$,~$k_{1}'$, $\DPtypo{k_{2}}{k_{2}'}$,~etc., for use in \Eqref[14sub2]{eq.}{}{(14_{2})} by \Eqref[14sub1]{eqs.}{}{(14_{1})}. %% -----File: 048.png---Folio 42------- \Section{BISECTED AMPLITUDES.} We have identically \begin{DPalign*} u &= 2 · \frac{u}{2} = 2 \raisebox{-1ex}{\scalebox{2}{$\displaystyle\int$}} \frac{d \am \dfrac{u}{2}}{\sqrt{1 - k^{2} \sn^{2} \dfrac{u}{2}}}; \\ \frac{u}{2} &= 2 · \frac{u}{4} = 2F\left(k, \am \frac{u}{4}\right); \\ & \quad \text {etc.} \\ \intertext{\indent Therefore} u &= F(k, \am u) = 2^{n} F\left(k, \am \frac{u}{n}\right) \\ &= 2^{n} · \am \frac{u}{n}, \rintertext{($n =$ limit,)} \end{DPalign*} $\am \dfrac{u}{n}$ being determined by repeated applications of \Eqref{eq.}{II}{(12)} of Chap.~II, as follows: \begin{align*} \sn^{2} \frac{u}{2} &= \frac{1 - \cn u}{1 + \dn u} = \frac{2 \sin^{2} \frac{1}{2} \am u}{1 + \dn u}; \\ % \Tag{(24)} \sn \frac{u}{2} &= \frac{\sin \frac{1}{2} \am u}{\sqrt{\dfrac{1 + \cos \beta}{2}}} = \frac{\sin \dfrac{\am u}{2}}{\cos \frac{1}{2} \beta}; \end{align*} $\beta$ being an angle determined by the equation \[ \Tag{(25)} \cos \beta = \dn u = \sqrt{1 - k^{2} \sn^{2} u}, \] and $n$ being the number which makes \[ 2^{n} \am \frac{u}{n} = \text{constant}. \] $\am \dfrac{u}{n}$ is found by repeated applications of \Eqref{eq.}{}{(24)}. %% -----File: 049.png---Folio 43------- Indicating the amplitudes as follows: \[ \begin{array}{r@{}l} \am u &{}= \phi, \\ \am \dfrac{u}{2} &{}= \phi_{02}, \\[2pt] \am \dfrac{u}{4} &{}= \phi_{04}, \\[2pt] \am \dfrac{u}{8} &{}= \phi_{08}, \\[2pt] \Dots{2} \\ %[** PP: Em-dash present in high-res scan, retaining] \llap{$\am \dfrac{u}{2^{n}}$} &{}= \rlap{$\phi_{02^{n}},\text{---}$} \\ \Tag{(26)} \llap{$F(k, \phi)$} &{} = \rlap{$2^{n} \phi_{02^{n}}$;} \end{array} \] $n$~being the limiting value. In \Eqref{eq.}{}{(18)}, when $k_{n}$~reaches its limit~$1$, we have \[ F(k_{n}, \phi_{0n}) = \int_{0}^{\phi} \frac{d \phi_{0n}}{\cos \phi_{0n}} = \log_{\epsilon} \tan (45^{\circ} + \tfrac{1}{2} \phi_{0n}), \] and \Eqref{eqs.}{}{(18)} and~\Eqref{}{}{(19)} become \begin{align*} \Tag{(27)} F(k, \phi) &= (1 + k_{0}')(1 + k_{00}') \dotsm (1 + k_{0n}') \log_{\epsilon} \tan (45° + \tfrac{1}{2} \phi_{0n}) \\ &= \frac{1}{\cos^{2} \frac{1}{2} \eta\, \cos^{2} \frac{1}{2} \eta_{0} \dotsm \cos^{2} \frac{1}{2} \eta_{0n}} \log_{\epsilon} \tan (45° + \tfrac{1}{2} \phi_{0n}) \\ \Tag{(28)} &= \frac{1}{\cos^{2} \frac{1}{2} \eta\, \cos^{2} \frac{1}{2} \eta_{0} \dotsm \cos^{2} \frac{1}{2} \eta_{0n}} · \frac{1}{M} \log \tan (45° + \tfrac{1}{2} \phi_{0n}); \end{align*} $n$~being the number which renders $k_{n} = 1$. \Eqref{Eq.}{}{(20)} becomes %% -----File: 050.png---Folio 44------- \begin{align*}%[** PP: Realigning first line on =] \Tag{(29)} F(k, \phi) &= \sqrt{\frac{k_{1} k_{2} \dotsm k_{n}^{2}}{k}} · \log_{\epsilon} \tan (45° + \tfrac{1}{2} \phi_{0n}) \\ % &= \sqrt{\frac{k_{1}k_{2} \dotsm k_{n}^{2}}{k}} · \frac{1}{M} \log \tan (45° + \tfrac{1}{2} \phi_{0n}) \\ % &= \sqrt{\frac{\cos \eta_{0} \cos \eta_{00} \dotsm \cos^{2} \eta_{0n}}{\cos \eta}} · \frac{1}{M} \log \tan (45° + \tfrac{1}{2} \phi_{0n}). \end{align*} In these equations $k'_{0}$,~$k'_{00}$,~etc., are determined by \Eqref[18sub3]{eqs.}{}{(18_3)}; $\eta$,~$\eta_{0}$,~etc., by \Eqref[18sub3]{eqs.}{}{(18_3)}; $\phi_{0}$,~$\phi_{00}$,~etc., by \Eqref[18sub2]{eqs.}{}{(18_2)}; $k_{1}$,~$k_{2}$,~etc., by \Eqref[18sub1]{eqs.}{}{(18_1)}. Substituting in \Eqref{eq.}{}{(27)} from \Eqref[20st]{eq.}{}{(20)^*}, we have \begin{align*} F(k, \phi) &= \frac{2K'}{\pi} \log_{\epsilon} \tan (45° + \tfrac{1}{2} \phi_{0n})\\ \Tag{(30)} &= \frac{2K'}{\pi M} \log \tan (45° + \tfrac{1}{2} \phi_{0n}). \end{align*} %% -----File: 051.png---Folio 45------- \Chapter{V}{Complete Functions} \First{Indicate} by~$K$ the complete integral \[ \Tag{(1)} K = \int_{0}^{\frac{\pi}{2}} \frac{d\phi}{\sqrt{1 - k^{2} \sin^{2} \phi}}, \] and by~$K_{0}$ the complete integral \[ \Tag{(2)} K_{0} = \int_{0}^{\frac{\pi}{2}} \frac{d\phi_{1}}{\sqrt{1 - k_{0}^{2} \sin^{2} \phi_{1}}}; \] and in a similar manner $K_{00}$,~$K_{03}$,~etc. From \Eqref{eq.}{IV}{(12)}, Chap.~IV, we have \begin{align*} \tan (\phi_{1} - \phi) &= k' \tan \phi \\ &= \frac{\tan \phi_{1} - \tan \phi}{1 + \tan \phi_{1} \tan \phi}, \\ \intertext{whence} \tan \phi_{1} &= \frac{(1 + k') \tan \phi}{1 - k' \tan^{2} \phi} \\ &= \frac{1 + k'}{\dfrac{1}{\tan \phi} - k' \tan \phi}. \end{align*} %% -----File: 052.png---Folio 46------- From this equation we see that when $\phi = \dfrac{\pi}{2}$, $\phi_{1} = \pi$. This same result might also have been deduced from \hyperref[page:30]{Fig.~1}, Chap.~IV, or from the equation \[ \Tag{(3)} \phi_{1} = 2 \phi - k_{0} \sin 2\phi + \tfrac{1}{2} k_{0}^{2} \sin 4\phi - \text{etc.}, \] this last being the well-known trigonometrical formula \begin{gather*} \tan x = n \tan y, \\ x = y - \frac{1 - n}{1 + n}\, \sin 2y + \frac{1}{2} \left(\frac{1 - n}{1 + n}\right)^{2} \sin 4y - \frac{1}{3} \left(\frac{1 - n}{1 + n}\right)^{3} \sin 6y + \text{etc.} \end{gather*} \begin{DPalign*} \lintertext{Since} \int_{0}^{\frac{\pi}{2}} \frac{d \phi_{1}}{\Delta (k_{0}\DPtypo{}{,} \phi_{1})} &= K_{0},\ \text{we must have} \\ \int_{0}^{\pi} \frac{d\phi_{1}}{\Delta (k_{0}\DPtypo{}{,} \phi_{1})} &= 2K_{0}. \end{DPalign*} These values substituted in \Eqref{eq.}{IV}{(13)}, Chap.~IV, give successively \[ \begin{array}{r@{}l} \Tag{(4)} K &{}= (1 + k_{0})K_{0}, \\ K_{0} &{}= (1 + k_{00})K_{00}, \\ \Dots{2} \\ \llap{$K_{0(n - 1)}$} &{}= (1 + k_{0n})K_{0n}; \end{array} \] whence \[ \Tag{(5)} K = (1 + k_{0})(1 + k_{00}) \dotsm (1 + k_{0n})K_{0n}. \] Since the limit of~$k_{0n}$ is~$0$, $K_{0n}$~becomes \[ K_{0n} = \int_{0}^{\frac{\pi}{2}} d \phi = \frac{\pi}{2}, \] %% -----File: 053.png---Folio 47------- and we have \begin{align*} \Tag{(6)} K &= \frac{\pi}{2} (1 + k_{0})(1 + k_{00}) \dotsm \\ \Tag{(7)} &= \frac{\tfrac{1}{2} \pi}{\cos^{2} \tfrac{1}{2}\theta \cos^{2} \tfrac{1}{2}\theta_{0} \dotsm \cos^{2} \tfrac{1}{2}\theta_{0n}}; \end{align*} $k_{1}$,~$k_{0}$,~etc., and $\theta_{1}$,~$\theta_{0}$,~etc., being found by \Eqref[14sub1]{eqs.}{IV}{(14_{1})} of Chap.~IV\@. From the formulæ in these two chapters we can compute the values of~$u$ for all values of $\phi$~and~$k$ and arrange them in tables. These are Legendre's Tables of Elliptic Integrals. %% -----File: 054.png---Folio 48------- \Chapter[Evaluation for phi.]{VI}{Evaluation for $\phi$.} \Section{TO FIND~$\phi$, $u$~AND~$k$ BEING GIVEN.} \DPtypo{From}{\First{From}} \Eqref{eqs.}{IV}{(21)} and~\Eqref{}{IV}{(23)}, Chap.~IV, we have ($n$~having the value which makes $\cos \theta_{0n} = 1$) \[ \Tag{(1)} \phi_{n} = \frac{2^{n}u}{(1 + k_{0})(1 + k_{00}) \dotsm (1 + k_{0n})} = \frac{2^{n}u \sqrt{\cos \theta}}{\sqrt{\cos \theta_{0} \dotsm \cos^{2} \theta_{0n}}}, \] from which $\phi_{n}$~can be calculated, $k_{0},~k_{00}$,~etc., being found by means of \Eqref[14sub1]{equations}{IV}{(14_1)}, Chap.~IV\@. Then, having $\phi_{n}$, $k_{0}$,~$k_{00}$,~etc., we can find~$\phi$ by means of the following equations: \[ \begin{array}{r@{}l} \sin (2\phi_{n - 1} - \phi_{n}) &= k_{0n} \sin \phi_{n},\\ \sin (2\phi_{n - 2} - \phi_{n - 1}) &= k_{0(n - 1)} \sin \phi_{n - 1},\\ \Dots{2} \\ \sin (2\phi - \phi_{1}) &= k_{0} \sin \phi_{1};\\ \end{array} \] whence we can get the angle~$\phi$. When $k > \sqrt{\frac{1}{2}}$ the following formulæ will generally be found to work more rapidly: From \Eqref{eq.}{IV}{(29)}, Chap.~IV, we have \[ \Tag{(2)} \log \tan (45° + \tfrac{1}{2} \phi_{0n}) = \frac{uM}{\sqrt{\dfrac{k_{1}k_{2} \dotsm k_{n}^{2}}{k}}}, \] %% -----File: 055.png---Folio 49------- from which we can get~$\phi_{0n}$; $k_{1}$,~$k_{2}$,~etc., being calculated from \Eqref[18sub1]{eqs.}{IV}{(18_{1})}, Chap.~IV, and $\phi$~being calculated from the following equations: \[ \begin{array}{r@{}l} \tan (\phi_{0(n - 1)} - \phi_{0n}) &= k_{n} \tan \phi_{0n}, \\ % \Dots{2} \\ % \tan (\phi_{0} - \phi_{00}) &= k_{2} \tan \phi_{02}, \\ % \tan (\phi - \phi_{0}) &= k \tan \phi_{0}; \end{array} \] whence we get~$\phi$. This gives a method of solving the equation \[ F\psi = n\, F\phi, \] where $n$~and~$\phi$ and the moduli are known, and $\psi$~is the required quantity. $n$~and~$\phi$ give~$F\psi$, and then $\psi$~can be determined by the foregoing methods. When $k = 1$ \emph{nearly}, \Eqref{equation}{}{(2)} takes a special form,--- \primo. When~$\tan \phi$ is very much less than~$\dfrac{1}{k'}$. In this case \begin{align*} F(k, \phi) &= \int \frac{d\phi}{\sqrt{\cos^{2}\phi + k'^{2} \sin^{2} \phi}} = \int \frac{d\phi}{\sqrt{(1 + k'^{2} \tan^{2} \phi) \cos^{2} \phi}} \\ &= \int \frac{d\phi}{\cos \phi} = \log \tan (45° + \tfrac{1}{2} \phi); \end{align*} whence we can find~$\phi$. \secundo. When~$\tan \phi$ and~$\dfrac{1}{k'}$ approach somewhat the same value, and $k' \tan \phi$~cannot be neglected, $F(k, \phi)$~must be transposed into another where $k'$~shall be much smaller, so that $k' \tan \phi$~can be neglected. %% -----File: 056.png---Folio 50------- These methods for finding~$\phi$ apply only when $\phi < \dfrac{\pi}{2}$, that is, $u < K$. In the opposite case ($u > K$) put \[ u = 2nK ± \nu, \] the upper or the lower sign being taken according as $K$~is continued in~$u$ an even or an odd number of times. In either case $\nu < K$, and we can find~$\nu$ by the preceding methods. Having found~$\nu$, we have from \Eqref{eq.}{III}{(5)}, Chap.~III, \begin{align*} \am u &= \am (2nK ± \nu)\\ &= n \pi ± \am \nu. \end{align*} %% -----File: 057.png---Folio 51------- \Chapter{VII}{Development of Elliptic Functions into Factors.} \SetRunningHeads{Development into Factors} From \Eqref{eq.}{IV}{(12)}, Chap.~IV, we readily get \begin{align*} \sin (2\phi_{0} - \phi) &= k \sin \phi;\\ % \sin \phi &= \frac{\sin 2 \phi_{0}}{\sqrt{1 + k^{2} + 2k \cos 2\phi_0}}\\ &= \frac{\sin 2 \phi_{0}}{\sqrt{(1 + k)\DPtypo{}{^2} - 4k \sin^{2} \phi_0}}\\ &= \frac{1 + k_{0}'}{2} · \frac{\sin 2 \phi_{0}}{\sqrt{1 - k_{1}^{2} \sin^{2} \phi_{0}}}\\ \end{align*} $\Bigl(\text{since } \dfrac{4k}{1 + k} = k_{1} \text{ and } 1 + k = \dfrac{2}{1 + k_{0}'}, \text{\Eqref{eqs.}{IV}{(6)} and~\Eqref{}{IV}{(10)}, Chap.~IV}\Bigr)$; and thence \[ \Tag{(1)} \sin \phi = \frac{(1 + k_{0}') \sin \phi_{0} \cos \phi_{0}}{\Delta (\phi_{0}, k_{1})}. \] From \Eqref{eq.}{IV}{(13)}, Chap.~IV, we have \[ \int_{0}^{\phi_{0}} \frac{d \phi_{0}}{\Delta (\phi_{0}, k_{1})} = \frac{1 + k}{2} \int_{0}^{\phi} \frac{d\phi}{\Delta (\phi, k)}; \] and from \Eqref{eq.}{V}{(4)}, Chap.~V, passing up the scale of moduli one step, \[ 1 + k = \frac{K_{1}}{K}, \] %% -----File: 058.png---Folio 52------- whence %[** PP: Next several displays aligned on = in original] \[ F(\phi_{0}, k_{1}) = \frac{K_{1}}{2K} F(\phi, k). \] Put \[ F(\phi_{0}, k_{1}) = u_{1}\quad \text{and} \quad F(\phi, k) = u, \] whence \[ u_{1} = \frac{K_{1}}{2K} u. \] Furthermore, \begin{align*} \phi &= \am (u, k);\\ \phi_{1} = \am (u_{1}, k_{1}) &= \am \left( \frac{K_{1}}{2K} u, k_{1} \right). \end{align*} Substituting these values in \Eqref{eq.}{}{(1)}, we have \[ \sn (u, k) = (1 + k'_{0}) \frac{\sn \left( \dfrac{K_{1}}{2K} u, k_{1} \right) \cn \left( \dfrac{K_{1}}{2K} u, k_{1} \right)} {\dn \left( \dfrac{K_{1}}{2K} u, k_{1} \right)}. \] But from \Eqref{eq.}{III}{(11)}, Chap.~III, we have \begin{align*} \frac{\cn (v, k_{1})}{\dn (v, k_{1})} &= \sn (v + K_{1}, k_{1}), \\ \intertext{or} \frac{\cn \left( \dfrac{K_{1}}{2K} u, k_{1} \right)} {\dn \left( \dfrac{K_{1}}{2K} u, k_{1} \right)} &= \sn \left( \frac{K_{1}u}{2K} + K_{1}, k_{1} \right) \\ &= \sn \left( \dfrac{K_{1}}{2K} (u + \DPtypo{K_{1}}{2K}), k_{1} \right); \end{align*} %% -----File: 059.png---Folio 53------- whence \begin{DPalign*} \Tag{(2)} \sn (u, k) &= (1 + k_{0}') \sn \frac{K_{1}u}{2K} \sn \left[\frac{K_{1}}{2K} (u + 2K)\right].\footnotemark \\ & \rintertext{\llap{(Mod.${}= k_{1}$.)}} \end{DPalign*} \footnotetext{The analogous formula in Trigonometry is \[ \sin \phi = \DPtypo{\tfrac{1}{2}}{2} \sin \tfrac{1}{2} \phi\, \sin \tfrac{1}{2} (\phi + \pi). \]} From this equation, evidently, we have generally \begin{DPgather*} \Tag[2st]{(2)^*} \sn (\nu, k_{n}) = (1 + k'_{0(n + 1)}) \sn \frac{K_{n + 1}}{2K_{n}} \nu \sn \left[\frac{K_{n + 1}}{2K_{n}} (\nu + 2K_{n})\right]. \\ \rintertext{\llap{(Mod.${}= k_{n + 1}$.)}} \end{DPgather*} Applying this general formula to the two factors of \Eqref{eq.}{}{(2)}, we have \begin{DPalign*} \sn \left(\frac{K_{1}u}{2K}, k_{1}\right) &= (1 + k'_{00}) \sn \frac{K_{2}}{2K_{1}} · \frac{K_{1}u}{2K} · \sn \left[\frac{K_{2}}{2K_{1}} \left(\frac{K_{1}u}{2K} + 2K_{1}\right)\right] \\ & \rintertext{\llap{(Mod.\ $k_{2}$)}} \\ &= (1 + k'_{00}) \sn \frac{K_{2}u}{2^{2}K} \sn \frac{K_{2}}{2^{2}K} (u + 4K); \rintertext{\llap{(Mod.\ $k_{2}$;)}} \end{DPalign*} \begin{DPgather*} \Tag{(3)} \sn \left[\frac{K_{1}}{2K} (u + 2K), k_{1}\right] = (1 + k'_{00}) \sn \frac{K_{2}}{2^{2}K} (u + 2K) \\ · \sn \frac{K_{2}}{2K_{1}} \left[\frac{K_{1}}{2K} (u + 2K) + 2K_{1}\right]. \rintertext{(Mod.\ $k_{2}$.)} \end{DPgather*} The last argument in this equation is equal to \[ \frac{K_{2}}{2^{2}K} (u + 6K); \] and since, \Eqref{eq.}{III}{(7)}, Chap.~III, \[ \sn (u, k_{2}) = \sn (2K_{2} - u, k_{2}), \] %% -----File: 060.png---Folio 54------- we can put in place of this, \[ 2K_{2} - \frac{K_{2}}{2^{2}K} (u + 6K\DPtypo{}{)} = \frac{K_{2}}{2^{2}K} (2K - u); \] whence \Eqref{eq.}{}{(3)} becomes \begin{DPgather*}%[** PP: Re-breaking] \sn \left[\frac{K_{1}}{2K} (u + 2K), k_{1}\right] = (1 + k'_{00}) \sn \frac{K_{2}}{2^{2}K} (2K + u) · \sn \frac{K_{2}}{2^{2}K} (2K - u). \\ \rintertext{\llap{(Mod.\ $k_{2}$.)}} \end{DPgather*} Substituting these values in \Eqref{eq.}{}{(2)}, we have \begin{DPalign*}%[** PP: Aligning on equals sign] \Tag{(4)} \sn (u, k) &= (1+k'_{0})(1 + k'_{00})^{2} \sn \frac{K_{2}u}{2^{2}K} \\ &\quad · \sn \frac{K_{2}}{2^{2}K} (2K ± u) \sn \frac{K_{2}}{2^{2}K} (4K+u), \rintertext{(Mod.\ $k_{2}$,)} \end{DPalign*} in which the double sign indicates two separate factors which are to be multiplied together. By the application of the general \Eqref[2st]{equation}{}{(2)^*} we find that the arguments in the second member of \Eqref{eq.}{}{(4)} will each give rise to two new arguments, as follows: \[ \frac{K_{2}u}{2^{2}K}\quad \text{gives}\quad \frac{K_{3}u}{2^{3}K}, \] and \begin{gather*} \frac{K_{3}}{2K_{2}} \left(\frac{K_{2}u}{2^{2}K} + 2K_{2}\right) = \frac{K_{3}}{2^{3}K} (u + 8K); \\ \frac{K_{2}}{2^{2}K} (2K ± u)\quad \text{gives}\quad \frac{K_{3}}{2^{3}K} (2K ± u), \end{gather*} %% -----File: 061.png---Folio 55------- and \begin{gather*} \Tag{(a)} \frac{K_{3}}{2K_{2}} \left[\frac{K_{2}}{2^{2}K} (2K ± u) + 2K_{2}\right] = \frac{K_{3}}{2^{3}K} (10K ± u), \\ \frac{K_{2}}{2^{2}K} (4K + u) \quad \text{gives} \quad \frac{K_{3}}{2^{3}K} (4K + u), \intertext{and} \Tag{(b)} \frac{K_{3}}{2K_{2}} \left[\frac{K_{2}}{2^{2}K} (4K + u) + 2K_{2}\right] = \frac{K_{3}}{2^{3}K} (12K + u). \end{gather*} Subtracting~\Eqno{(a)} and~\Eqno{(b)} from~$2K_{3}$, by which the sine of the amplitudes will not be changed [\Eqref{eq.}{III}{(7)}, Chap.~III], and since our new modulus is~$k_{3}$, we have for the expressions \Eqno{(a)}~and~\Eqno{(b)}, \begin{gather*} \Tag[apr]{(a')} \frac{K_{3}}{2^{3}K} (6K \mp u); \\ \Tag[bpr]{(b')} \frac{K_{3}}{2^{3}K} (4K - u). \end{gather*} Substituting these values in \Eqref{eq.}{}{(4)}, and remembering the factor $(1 + k'_{03})$ introduced by each application of \Eqref[2st]{eq.}{}{(2)^*}, we have \begin{DPalign*}%[** PP: Align on equal signs, remove extraneous semicolons] \sn (u, k) &= (1 + k'_{0})(1 + k'_{00})^{2}(1 + k'_{03})^{4} \sn \frac{K_{3}u}{2^{3}K}\DPtypo{;}{} \\ &\quad· \sn \frac{K_{3}}{2^{3}K} (2K ± u) \sn \frac{K_{3}}{2^{3}K} (4K ± u)\DPtypo{;}{} \\ &\quad· \sn \frac{K_{3}}{2^{3}K} (6K ± u) \sn \frac{K_{3}}{2^{3}K} (8K + u). \rintertext{(Mod.\ $k_{3}$.)} \end{DPalign*} %% -----File: 062.png---Folio 56------- From this the law governing the arguments is clear, and we can write for the general equation \begin{DPalign*} \Tag{(5)} \sn (u, k) &= (1 + k_{0}')(1 + k'_{00})^{2}(1 + k'_{03})^{4} \dotsm (1 + k'_{0n})^{2^{n-1}} \\ &\quad· \sn \frac{K_{n}u}{2^{n}K} \sn \frac{K_{n}}{2^{n}K} (2K ± u) \\ &\quad· \sn \frac{K_{n}}{2^{n}K} (4K ± u) \sn \frac{K_{n}}{2^{n}K} (6K ± u) \\ &\quad \dotsm \sn \frac{K_{n}}{2^{n}K} \Bigl[(2^{n} - 2)K ± u\Bigr] \\ &\quad· \sn \frac{K_{n}}{2^{n}K} (2^{n}K + u). \rintertext{\llap{(Mod.\ $k_{n}$.)}} \end{DPalign*} Indicate the continued product of the binomial factors by~$A'$, and we have \[ A' = (1 + k_{0}')(1 + k'_{00})^{2}(1 + k'_{03})^{4}(1 + k'_{04})^{8} \dotsm. \] Since the limit of~$k'_{0}$, $k'_{00}$,~etc., is zero, it is evident that these factors converge toward the value unity. It can be shown that the functional factors also converge toward the value unity. Thus the argument of the last factor can be written \[ K_{n} + \frac{K_{n}u}{2^{n}K}. \] From \Eqref{eq.}{III}{(11)}, Chap.~III, we get then \begin{DPgather*} \sn \left(K_{n} + \frac{K_{n}u}{2^{n}K}\right) = \frac{\cn \dfrac{K_{n}u}{2^{n}K}} {\dn \dfrac{K_{n}u}{2^{n}K}}. \rintertext{(Mod.\ $k_{n}$.)} \end{DPgather*} But since $k_{n}$ at its limit is equal to unity, $\cn = \dn$; whence the last factor of \Eqref{eq.}{}{(5)} is unity. %% -----File: 063.png---Folio 57------- From \Eqref{eq.}{IV}{(21)}, Chap.~IV, we have \[ \operatorname{limit} \frac{K_{n}}{2^{n}K} = \frac{2 \pi}{2 K'}. \] Therefore for $n = \infty$, \Eqref{eq.}{}{(5)} becomes \begin{DPalign*}%[** PP: Align on equals sign] \sn (u, k) &= A' \sn \frac{\pi u}{2K'} \sn \frac{\pi}{2K'} (2K ± u) \\ &\quad· \sn \frac{\pi}{2K'}(4K ± u) \sn \frac{\pi}{2K'}(6K ± u), \ldots \rintertext{(Mod.\ $1$,)} \\ \intertext{or} \Tag{(6)} \sn (u, k) &= A' \sn \frac{\pi u}{2K'} \left[{\textstyle\prod\limits_{1}^{\infty}} h\right] \sn \frac{\pi}{2K'} (2hK ± u), \rintertext{\llap{(Mod.\ $1$,)}} \end{DPalign*} where the sign~$\Prod$ indicates the continued product in the same manner as $\sum$~indicates the continued sum. When~$k = 1$, $\displaystyle\int_{0}^{\phi} F(\phi, k)\DPtypo{}{\,d\phi}$ becomes \[ \nu = \int_{0}^{\phi} \frac{d \phi}{\cos \phi} = \tfrac{1}{2} \DPtypo{\log^e}{\log_\epsilon} \frac{1 + \sin \phi}{1 - \sin \phi}; \] whence \[ e^{2\nu} = \frac{1 + \sin \phi}{1 - \sin \phi}, \] and \[ \sin \phi = \frac{e^{2\nu} - 1}{e^{2\nu} + 1} = \frac{e^{\nu} - e^{-\nu}}{e^{\nu} + e^{-\nu}} = \sn (\nu, 1). \] %% -----File: 064.png---Folio 58------- Hence in \Eqref{equation}{}{(6)} \begin{align*} \sin \frac{\pi u}{2K'} &= \frac{e^{\frac{\pi u}{2K'}} - e^{-\frac{\pi u}{2K'}}} {e^{\frac{\pi u}{2K'}} + e^{-\frac{\pi u}{2K'}}}; \\ \sn \frac{\pi}{2K'}(2hK ± u) &= \frac{e^{ \frac{h\pi K}{K'}} e^{±\frac{\pi u}{2K'}} - e^{-\frac{h\pi K}{K'}} e^{\mp\frac{\pi u}{2K'}}} {e^{ \frac{h\pi K}{K'}} e^{±\frac{\pi u}{2K'}} + e^{-\frac{h\pi K}{K'}} e^{\mp\frac{\pi u}{2K'}}}. \end{align*} Put \[ \Tag[6st]{(6)^*} q = e^{-\frac{\pi K'}{K}}, \quad q' = e^{-\frac{\pi K}{K'}}, \] and the last expression becomes \begin{align*} \sn \frac{\pi}{2K'} & (2hK ± u) = \frac{q'^{-h} e^{±\frac{\pi u}{2K'}} - q'^{h} e^{\mp\frac{\pi u}{2K'}}} {q'^{-h} e^{±\frac{\pi u}{2K'}} + q'^{h} e^{\mp\frac{\pi u}{2K'}}}; \\ % \sn \frac{\pi}{2K'} & (2hK + u) \sn \frac{\pi}{2K'}(2hK - u) \\ &= \frac{q'^{-h} e^{ \frac{\pi u}{2K'}} - q'^{h} e^{-\frac{\pi u}{2K'}}} {q'^{-h} e^{ \frac{\pi u}{2K'}} + q'^{h} e^{-\frac{\pi u}{2K'}}} · \frac{q'^{-h} e^{-\frac{\pi u}{2K'}} - q'^{h} e^{ \frac{\pi u}{2K'}}} {q'^{-h} e^{-\frac{\pi u}{2K'}} + q'^{h} e^{ \frac{\pi u}{2K'}}} \\ % &= \frac{q'^{-2h} + q'^{2h} - \left(e^{\frac{\pi u}{K'}} + e^{-\frac{\pi u}{K'}}\right)} {q'^{-2h} + q'^{2h} + \left(e^{\frac{\pi u}{K'}} + e^{-\frac{\pi u}{K'}}\right)}. \end{align*} From plane trigonometry we have the equations \[ \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = -i \tan ix, \quad e^{x} + e^{-x} = 2 \cos ix; \] %% -----File: 065.png---Folio 59------- where $i = \sqrt{-1}$: which gives \begin{DPalign*} \sn \frac{\pi u}{2K'} &= -i \tan \frac{\pi i u}{2K'}; \rintertext{\llap{(Mod.\ $1$;)}} \\ % \sn \frac{\pi}{2K'} & (2hK + u) \sn \frac{\pi}{2K'}(2hK - u) \\ &= \frac{q'^{-2h} + q'^{2h} - 2 \cos \dfrac{\pi iu}{K'}} {q'^{-2h} + q'^{2h} + 2 \cos \dfrac{\pi iu}{K'}} \\ % %[** PP: No equation label in orig., but text refers specifically to (7).] \DPtypo{}{\Tag{(7)}} &= \frac{1 - 2q'^{2h} \cos \dfrac{\pi iu}{K'} + q'^{4h}} {1 + 2q'^{2h} \cos \dfrac{\pi iu}{K'} + q'^{4h}}. \end{DPalign*} From \Eqref{eq.}{III}{(10)}, Chap.~III, we have \[ \sn (u, k) = -i \tn (iu, k'). \] Substituting these values in eq.~(6), we have \[ \tn (iu, k') = A' \tan \frac{\pi iu}{2K'} \Prod \frac{1 - 2q'^{2h} \cos \dfrac{\pi iu}{K'} + q'^{4h}} {1 + 2q'^{2h} \cos \dfrac{\pi iu}{K'} + q'^{4h}}. \] Now in place of the series of moduli $k'$,~$k_{0}'$ and the corresponding complete integral~$K'$, we are at liberty to substitute the parallel series of moduli $k$,~$k_{0}$ and the corresponding complete integral~$K$; calling the new integral~$u$, we have \begin{align*} \Tag{(8)} \tn (u, k) &= A \tan \frac{\pi u}{2K} \DPtypo{\{\textstyle\prod}{\Prod} \frac{1 - 2q^{2h} \cos \dfrac{\pi u}{K} + q^{4h}} {1 + 2q^{2h} \cos \dfrac{\pi u}{K} + q^{4h}} \\ %% -----File: 066.png---Folio 60------- &= A \tan \frac{\pi u}{2K} \frac{1 - 2q^{2} \cos \dfrac{\pi u}{K} + q^{4}} {1 + 2q^{2} \cos \dfrac{\pi u}{K} + q^{4}} \\ %[** PP: Adding {} to the right of &s to coax · into math mode] &\PadTo[r]{{}= A \tan \dfrac{\pi u}{2K}}{{}·{}} \frac{1 - 2q^{4} \cos \dfrac{\pi u}{K} + q^{8}} {1 + 2q^{4} \cos \dfrac{\pi u}{K} + q^{8}} \\ &\PadTo[r]{{}= A \tan \dfrac{\pi u}{2K}}{{}·{}} \frac{1 - 2q^{6} \cos \dfrac{\pi u}{K} + q^{12}} {1 + 2q^{6} \cos \dfrac{\pi u}{K} + q^{12}} \dotsm, \end{align*} where \[ \Tag{(9)} A = (1 + k_{0})(1 + k_{00})^{2}(1 + k_{03})^{4}(1 + k_{04})^{8} \dotsm \] Now in \Eqref{equation}{}{(6)} put $u+K$~for~$u$, and we have, since [\Eqref{eq.}{III}{(11)}, Chap.~III] $\sn (u+K)= \dfrac{\cn u}{\dn u}$, \begin{DPalign*}%[** PP: Re-breaking] \frac{\cn u}{\dn u} &= A' \sn \frac{\pi (u+K)}{2K'} \\ &\quad \Prod \sn \frac{\pi}{2K'} [(2h+1)K+u] · \sn \frac{\pi}{2K'} [(2h-1)K-u]. \\ &\rintertext{\llap{(Mod.\ $1$.)}} \end{DPalign*} Now from $2h-1$ and~$2h+1$ we have the following series of numbers respectively: \[ \begin{array}{l@{\qquad}*{6}{@{\quad}r}} 2h-1: & 1, & 3, & 5, & 7, & 9, & \text{etc.} \\ 2h+1: & & 3, & 5, & 7, & 9, & \text{etc.} \end{array} \] It will be observed that the factor outside of the sign~$\Prod$, viz., $\sin \am \dfrac{\pi (u + K)}{2K'}$, would, if placed under the sign~$\Prod$, supply %% -----File: 067.png---Folio 61------- the missing first term of the second series. Hence, placing this factor within the sign, we have \begin{DPalign*}%[** PP: Re-breaking] \Tag{(10)} \frac{\cn u}{\dn u} &= A'\Prod \sn \frac{\pi}{2K'} \left[(2h-1)K + u\right] · \sn \frac{\pi}{2K'} \left[(2h-1)K - u\right]. \\ & \rintertext{\llap{(Mod.\ $1$.)}} \end{DPalign*} Comparing this with \Eqref{equation}{}{(7)}, we see that the factors herein differ from those in \Eqref{equation}{}{(7)} only in having $2h-1$ in place of~$2h$; hence we have \begin{DPgather*} \sn \frac{\pi}{2K'} [(2h-1)K + u] \sn \frac{\pi}{2K'} [(2h-1)K - u] \\ = \frac{1 - 2q'^{2h-1} \cos \dfrac{\pi iu}{K'} + q'^{4h-2}} {1 + 2q'^{2h-1} \cos \dfrac{\pi iu}{K'} + q'^{4h-2}}. \rintertext{(Mod.\ $1$.)} \end{DPgather*} From \Eqref{eqs.}{III}{(10)}, Chap.~III, we have \[ \frac{\cn (u, k)}{\dn (u, k)} = \frac{1}{\dn(iu, k')}; \] whence \Eqref{eq.}{}{(10)} becomes \[ \Tag{(11)} \frac{1}{\dn(iu, k')} = A'\Prod \frac{1 - 2q'^{2h-1} \cos \dfrac{\pi iu}{K'} + q'^{4h-2}} {1 + 2q'^{2h-1} \cos \dfrac{\pi iu}{K'} + q'^{4h-2}}; \] and when in place of~$iu$, $k'$, $K'$, $q'$,~$A'$, we substitute~$u$, $k$, $K$, $q$ and~$A$, and invert the equation, we have \[ \Tag{(12)} \dn (u, k) = \frac{1}{A} \Prod \frac{1 + 2q^{2h-1} \cos \dfrac{\pi u}{K} + q^{4h-2}} {1 - 2q^{2h-1} \cos \dfrac{\pi u}{K} + q^{4h-2}}. \] %% -----File: 068.png---Folio 62------- Bearing in mind the remarkable property (Chap.~III, \Pageref{p.}{29}) that the functions $\sn u$~and~$\dn u$ approach infinity for the same value of~$u$, we see that both these functions, except as to the factor independent of~$u$, must have the same denominator. Furthermore, since $\sn u$~and~$\tn u$ disappear for the same value of~$u$, they must, except for the independent factor, have the same numerator. Hence, indicating by~$B$ a new quantity, dependent upon~$k$ but independent of~$u$, we have \[ \Tag{(13)} \sn (u, k) = B \sin \frac{\pi u}{2K} \Prod \frac{1 - 2q^{2h} \cos \dfrac{\pi u}{K} + q^{4h}} {1 - 2q^{2h-1} \cos \dfrac{\pi u}{K} + q^{4h-2}}; \] and since \[ \cn u = \frac{\sn u}{\tn u}, \] we also have, from \Eqref{eqs.}{}{(8)} and~\Eqref{}{}{(13)}, \[ \Tag{(14)} \cn (u, k) = \frac{B}{A} \cos \frac{\pi u}{2K} \Prod \frac{1 + 2q^{2h} \cos \dfrac{\pi u}{K} + q^{4h}} {1 - 2q^{2h-1} \cos \dfrac{\pi u}{K} + q^{4h-2}}. \] Collecting these results, we have the following equations: \begin{align*} \Tag{(15)} \sn (u, k) &= B \sin \frac{\pi u}{2K} \Prod \frac{1 - 2q^{2h} \cos \dfrac{\pi u}{K} + q^{4h}} {1 - 2q^{2h-1} \cos \dfrac{\pi u}{K} + q^{4h-2}}, \\ \Tag{(16)} \cn (u, k) &= \frac{B}{A} \cos \frac{\pi u}{2K} \Prod \frac{1 + 2q^{2h} \cos \dfrac{\pi u}{K} + q^{4h}} {1 - 2q^{2h-1} \cos \dfrac{\pi u}{K} + q^{4h-2}}, \\ %% -----File: 069.png---Folio 63------- \Tag{(17)} \dn (u, k) &= \frac{1}{A} \Prod \frac{1 + 2q^{2h-1} \cos \dfrac{\pi u}{K} + q^{4h-2}} {1 - 2q^{2h-1} \cos \dfrac{\pi u}{K} + q^{4h-2}}. \end{align*} To ascertain the values of $A$ and~$B$, we proceed as follows: In \Eqref{eq.}{}{(17)} we make~$u = 0$, whence, by \Eqref{eq.}{II}{(13)}, Chap.~II, we have \begin{align*} 1 &= \frac{1}{A} \Prod \left(\frac{1 + q^{2h-1}}{1 - q^{2h-1}}\right)^{2}; \\ \intertext{whence} \Tag{(18)} \frac{1}{A} &= \Prod \left(\frac{1 - q^{2h-1}}{1 + q^{2h-1}}\right)^{2}. \\ \intertext{\indent In \Eqref{equation}{}{(17)}, making~$u=K$, we get, by \Eqref{equation}{III}{(1)}, Chap.~III,} k' &= \frac{1}{A} \Prod \left(\frac{1 - q^{2h-1}}{1 + q^{2h-1}}\right)^{2} = \frac{1}{A^{2}}; \\ \Tag{(19)} \therefore \frac{1}{A} &= \sqrt{k'}. \end{align*} We have identically \begin{align*} 1 &= B \frac{1}{B} = B \frac{\dfrac{1}{A}}{\dfrac{B}{A}} = B \frac{\sqrt{k'}}{\dfrac{B}{A}}; \\ \intertext{whence} \frac{B}{A} & = B \sqrt{k'}. \end{align*} To calculate~$B$, put~$e^{\frac{i\pi u}{2K}} = \nu$; if we change $\dfrac{\pi u}{2K}$ into %% -----File: 070.png---Folio 64------- $\dfrac{\pi u}{2K} + \dfrac{i\pi K'}{2K}$, $\nu$~will change into~$\nu \sqrt{q}$, and $\sn u$ will become, by \Eqref{eq.}{III}{(14)}, Chap.~III, \[ \sn (u+iK') = \frac{1}{k \sn u}. \] Now, replacing $\sin \dfrac{\pi u}{2K}$ and $\cos \dfrac{\pi u}{K}$ by their exponential values, and observing that \[ 1 - 2q^{n} \cos \frac{\pi u}{K} + q^{2n} = (1 - q^{n}\nu^{2})(1 - q^{n}\nu^{-2}), \] we have \[ \sn u = \frac{B}{2} · \frac{\nu - \nu^{-1} }{\sqrt{-1}} · \frac{\Prod (1 - q^{2h} \nu^{2})(1 - q^{2h} \nu^{-2})} {\Prod (1 - q^{2h-1}\nu^{2})(1 - q^{2h-1}\nu^{-2})}. \] Changing $u$ into~$u + iK'$, and consequently $\nu$~into~$\nu \sqrt{q}$, we have \[ \frac{1}{k \sn u} = \frac{B}{2} · \frac{\nu \sqrt{q} - \nu^{-1} \sqrt{q^{-1}}}{\sqrt{-1}} · \frac{\Prod (1 - q^{2h+1}\nu^{2})(1 - q^{2h-1}\nu^{-2})} {\Prod (1 - q^{2h} \nu^{2})(1 - q^{2h-2}\nu^{\DPtypo{2}{-2}})}. \] Multiplying these equations together, member by member, and observing that \begin{align*} \nu \sqrt{q} - \nu^{-1} \sqrt{q^{-1}} &= \frac{1 - q\nu^{2}}{-\nu \sqrt{q}}, \\ \nu - \nu^{-1} &= \nu(1 - \nu^{-2}), \end{align*} we get \begin{align*} \frac{1}{k} &= \frac{B^{2}}{4} · \frac{1 - q\nu^{2}}{\nu \sqrt{q}} · \nu(1 - \nu^{-2}) · \frac{\Prod(1 - q^{2h+1}\nu^{2})(1 - q^{2h} \nu^{-2})} {\Prod(1 - q^{2h-1}\nu^{2})(1 - q^{2h-2}\nu^{-2})} \\ %% -----File: 071.png---Folio 65------- &= \frac{B^{2}}{4 \sqrt{q}} (1 - q\nu^{2})\nu(1 - \nu^{-2}) \frac{(1 - q^{3}\nu^{2})(1 - q^{5}\nu^{2}) \dotsm} {(1 - q \nu^{2})(1 - q^{3}\nu^{2}) \dotsm} \\ &\PadTo[r]{{}=\dfrac{B^{2}}{4 \sqrt{q}} (1 - q\nu^{2})\nu(1 - \nu^{-2})}{{}·{}} \frac{(1 - q^{2}\nu^{-2})(1 - q^{4}\nu^{-2}) \dotsm} {(1 - \nu^{-2})(1 - q^{2}\nu^{-2}) \dotsm} \\ &= \frac{B^{2}}{4} · \frac{1}{\sqrt{q}}. \end{align*} \begin{align*} \therefore B &= \frac{2 \sqrt[4]{q}}{\sqrt{k}}; \\ \intertext{whence} \frac{B}{A} &= 2 \sqrt[4]{q} \sqrt{\frac{k'}{k}}. \end{align*} Substituting these values in \Eqref{eqs.}{}{(15)},~\Eqref{}{}{(16)}, and~\Eqref{}{}{(17)}, we have \begin{align*} \Tag{(20)} \sn (u, k) &= \frac{2 \sqrt[4]{q}}{\sqrt{k}} \sin \frac{\pi u}{2K} \Prod \frac{1 - 2q^{2h} \cos \dfrac{\pi u}{K} + q^{4h}} {1 - 2q^{2h-1} \cos \dfrac{\pi u}{K} + q^{4h-2}}; \\ % \Tag{(21)} \cn (u, k) &= \frac{2 \sqrt{k'} \sqrt[4]{q}}{\sqrt{k}} \cos \frac{\pi u}{2K} \Prod \frac{1 + 2q^{2h} \cos \dfrac{\pi u}{K} + q^{4h}} {1 - 2q^{2h-1} \cos \dfrac{\pi u}{K} + q^{4h-2}}; \\ % \Tag{(22)} \dn (u, k) &= \sqrt{k'} \Prod \frac{1 + 2q^{2h-1} \cos \dfrac{\pi u}{K} + q^{4h-2}} {1 - 2q^{2h-1} \cos \dfrac{\pi u}{K} + q^{4h-2}}. \end{align*} %% -----File: 072.png---Folio 66------- \Chapter[The Theta Function.]{VIII}{The $\Theta$ Function.} \First{We} will indicate the denominator in \Eqref{eq.}{VII}{(20)}, Chap.~VII, by~$\phi (u)$, thus: \[ \Tag{(1)} \phi (u) = \Prod(1 - 2q^{2h - 1} \cos \frac{\pi u}{K} + q^{4h - 2}). \] We will now develop this into a series consisting of the cosines of the multiples of $\dfrac{\pi u}{K}$. Put $\dfrac{\pi u}{2K} = x$, whence \begin{align*} 2 \cos \frac{\pi u}{K} &= (e^{2ix} + e^{-2ix});\\ \intertext{but} 1 - 2q^{2h - 1} \cos \frac{\pi u}{K} + q^{4h - 2} &= (1 - q^{2h - 1}e^{2ix})(1 - q^{2h - 1}e^{-2ix}), \end{align*} and therefore \begin{align*} \Tag{(2)} \phi (u) &= (1 - qe^{2ix})(1 - q^{3}e^{2ix})(1 - q^{5}e^{2ix}) \dotsm \\ &\PadTo{{}={}}{} (1 - qe^{-2ix})(1 - q^{3}e^{-2ix})(1 - q^{5}e^{-2ix}) \dotsm \end{align*} Putting now $u + 2iK'$ instead of~$u$, we have \begin{align*} x_{1} &= \frac{\pi(u + 2iK')}{2K} = x + \frac{\pi iK'}{K},\\ 2ix_{1} &= 2ix - \frac{2 \pi K'}{K}; \end{align*} %% -----File: 073.png---Folio 67------- and \begin{align*} e^{2ix_{1}} &= q^{2}e^{2ix}, \\ e^{-2ix_{1}} &= \frac{1}{q^{2}} e^{-2ix}. \end{align*} From these we have \begin{align*} \phi (u + 2iK') = - \frac{1}{q} e^{-2ix} & (1 - qe^{2ix}) (1 - q^{3}e^{2ix}) \dotsm \\ & (1 - qe^{-2ix})(1 - q^{3}e^{-2ix}) \dotsm; \end{align*} whence \begin{align*} \phi (u + 2iK') &= -\frac{1}{q} e^{-2ix} \phi (u), \\ \intertext{or} \Tag{(3)} \phi (u + 2iK') &= -q^{-1} e^{-\frac{\pi iu}{K}} \phi (u). \end{align*} Now put \[ \Tag{(4)} \phi (u) = A + B \cos \frac{\pi u}{K} + C \cos \frac{2\pi u}{K} + D \cos \frac{3\pi u}{K} + \text{etc.} \] Since \[ \cos \frac{\pi u}{K} = \tfrac{1}{2} \left(e^{2ix} + e^{-2ix}\right), \] this becomes \begin{align*} \Tag{(5)} \phi (u) = A & + \tfrac{1}{2} Be^{2ix} + \tfrac{1}{2} Ce^{4ix} + \tfrac{1}{2} De^{6ix} + \dotsb \\ & + \tfrac{1}{2} Be^{-2ix} + \tfrac{1}{2} Ce^{-4ix} + \tfrac{1}{2} De^{-6ix} + \dotsb; \end{align*} whence \begin{align*} \Tag{(6)} -\frac{1}{q} e^{-2ix} \phi (u) = & -\frac{A}{q} e^{-2ix} - \frac{B}{2q} - \frac{C}{2q} e^{2ix} - \frac{D}{2q} e^{4ix} - \dotsb \\ & -\frac{B}{2q} e^{-4ix} - \frac{C}{2q} e^{-6ix} - \frac{D}{2q} e^{-8ix} - \dotsb\DPtypo{}{.} \end{align*} %% -----File: 074.png---Folio 68------- Now in \Eqref{equation}{}{(5)} put $u + 2iK'$ in place of~$u$, remembering that $e^{2ix}$~and~$e^{-2ix}$ are thereby changed respectively into $q^{2}e^{2ix}$~and~$q^{-2}e^{-2ix}$, and we have \begin{align*} \Tag{(7)} \phi (u + 2iK') = A & + \frac{Bq^{2}}{2} e^{2ix} + \frac{Cq^{4}}{2} e^{4ix} + \frac{Dq^{6}}{2} e^{6ix} + \dotsb \\ & + \frac{B}{2q^{2}} e^{-2ix} + \frac{C}{2q^{4}} e^{-4ix} + \dotsb. \end{align*} Since \Eqref{equations}{}{(6)} and~\Eqref{}{}{(7)} are equal, we have \[ \begin{array}{r@{}lcr@{}l} -\dfrac{B}{2q} &{}= A, &\qquad\qquad& B &= -2qA; \\ -\dfrac{C}{2q} &{}= \dfrac{Bq^{2}}{2}, && C &= +2q^{4}A; \\ -\dfrac{D}{2q} &{}= \dfrac{Cq^{4}}{2}, && D &= -2q^{9}A; \\ \Dots{2} && \Dots{2} \\ \end{array} \] whence \[ \Tag{(8)} \left\{ \begin{aligned} %[** PP: Retain small parentheses] &\Prod (1 - 2q^{2h-1} \cos \dfrac{\pi u}{K} + q^{4h-2}) \\ &\begin{aligned} {} = A(1 - 2q \cos \dfrac{\pi u}{K} &+ 2q^{4} \cos \dfrac{2\pi u}{K} - 2q^{9} \cos \dfrac{3\pi u}{K} \\ &+ 2q^{16} \cos \dfrac{4\pi u}{K} - \ldots). \end{aligned} \end{aligned} \right. \] The series in the second member has been designated by Jacobi and subsequent writers by~$\Theta (u)$, thus: \[ \Tag{(9)} \Theta (u) = 1 - 2q \cos \frac{\pi u}{K} + 2q^{4} \cos \frac{2\pi u}{K} - \dotsb \] %% -----File: 075.png---Folio 69------- \Chapter[The Theta and Eta Functions.]{IX}{The $\Theta$ and $\Eta$ Functions.} \First{In} \Eqref{equation}{VII}{(20)}, Chap.~VII, viz., \[ \sn (u, k) = \frac{2 \sqrt[4]{q}}{\sqrt{k}} \sin \frac{\pi u}{2K} \Prod \frac{1 - 2q^{2h} \cos \dfrac{\DPtypo{u \pi}{\pi u}}{K} + q^{4h}} {1 - 2q^{2h-1} \cos \dfrac{\pi u}{K} + q^{4h-2}}, \] the numerator and the denominator have been considered separately by Jacobi, who gave them a special notation and developed from them a theory second only in importance to the elliptic functions themselves. Put [see \Eqref{equation}{VIII}{(8)}, Chap.~VIII] \begin{gather*} \Tag{(1)} \Theta (u) = \frac{1}{A} \Prod (1 - 2q^{2h-1} \cos \frac{\pi u}{K} + q^{4h-2}). \\ \Tag{(2)} \Eta (u) = 2 \frac{1}{A} \sqrt[4]{q} \sin \frac{\pi u}{2K} \Prod \left(1 - 2q^{2h} \cos \frac{\pi u}{K} + q^{4h}\right); \end{gather*} $A$ being a constant whose value is to be determined later. From these we have \[ \Tag{(3)} \sn (u, k) = \frac{1}{\sqrt{k}} · \frac{\Eta (u)}{\Theta (u)}. \] %% -----File: 076.png---Folio 70------- The functions $\sn u$~and~$\cn u$ can also be expressed in terms of the new functions; thus we have \[ \Tag{(4)} \cn (u, k) = \sqrt{\frac{k'}{k}} · 2 \sqrt[4]{q} \cos \frac{\pi u}{2K} \Prod \frac{1 + 2q^{2h} \cos \dfrac{\pi u}{K} + q^{4h}} {1 - 2q^{2h-1} \cos \dfrac{\pi u}{K} + q^{4h-2}}; \] or, since $\sin x = \cos \left(x + \dfrac{\pi}{2}\right)$ and $\cos x = -\DPtypo{\cos}{\sin} \left(x + \dfrac{\pi}{2}\right)$, and putting $u = \dfrac{2Kx}{\pi}$, \begin{align*} \cn \left(\frac{2Kx}{\pi}, k\right) &= \sqrt{\frac{k'}{k}} \frac{\Eta \left[\dfrac{2K}{\pi} \left(x + \dfrac{\pi}{2}\right)\right]} {\Theta \left(\dfrac{2Kx}{\pi}\right)} \\ &= \sqrt{\frac{k'}{k}} \frac{\Eta \left[\dfrac{2Kx}{\pi} + K\right]} {\Theta \left(\dfrac{2Kx}{\pi}\right)}. \end{align*} Replacing $\dfrac{2Kx}{\pi}$ by its value,~$u$, we have \[ \Tag{(5)} \cn (u, k) = \sqrt{\frac{k'}{k}}\, \frac{\Eta (u + K)}{\Theta (u)}. \] Furthermore, \[ \Tag{(6)} \dn (u, k) = \sqrt{k'} \Prod \frac{1 + 2q^{2h-1} \cos \dfrac{\pi u}{K} + q^{4h-2}} {1 - 2q^{2h-1} \cos \dfrac{\pi u}{K} + q^{4h-2}} \] %% -----File: 077.png---Folio 71------- gives in the same manner \begin{align*} \dn \frac{2Kx}{\pi} &= \sqrt{k'}\, \frac{\Theta \left[\dfrac{2K}{\pi} \left(x + \dfrac{\pi}{2}\right)\right]} {\Theta \left(\dfrac{2Kx}{\pi}\right)}, \intertext{or} \Tag{(7)} \dn (u, k) &= \sqrt{k'}\, \frac{\Theta (u + K)}{\Theta (u)}. \end{align*} If we put \begin{align*} \Tag{(8)} \Eta (u + K) &= \Eta_{1}(u), \\ \Tag{(9)} \Theta (u + K) &= \Theta_{1}(u), \end{align*} the three elliptic functions can be expressed by the following formulas: \begin{align*} \Tag{(10)} \sn (u, k) &= \frac{1}{\sqrt{k}} · \frac{\Eta (u)}{\Theta (u)}; \\ \Tag{(11)} \cn (u, k) &= \sqrt{\frac{k'}{k}} · \frac{\Eta_{1}(u)}{\Theta (u)}; \\ \Tag{(12)} \dn (u, k) &= \sqrt{k'} \frac{\Theta_{1} (u)}{\Theta (u)}. \end{align*} These functions $\Theta$~and~$\Eta$ can be expressed in terms of each other. By definition, \[ \Eta (u) = 2C \sqrt[4]{q} \sin \frac{\pi u}{2K} \Prod \left(1 - 2q^{2h} \cos \frac{\pi u}{K} + q^{4h}\right); \] %% -----File: 078.png---Folio 72------- but \begin{align*} 1 - 2q^{h} \cos \frac{\pi u}{K} + q^{2h} &= \Bigl(1 - q^{h}e^{ \frac{\pi u \sqrt{-1}}{K}}\Bigr) \Bigl(1 - q^{h}e^{-\frac{\pi u \sqrt{-1}}{K}}\Bigr) \\ \sin \frac{\pi u}{2K} &= \frac{e^{\frac{\pi iu}{2K}} - e^{-\frac{\pi iu}{2K}}}{2 \sqrt{-1}} \\ &= e^{\frac{-\pi iu}{2K}} \frac{1 - e^{\frac{\pi iu}{K}}}{2} \sqrt{-1}, \end{align*} and consequently \[ \Tag{(13)} \Eta(u) = C \sqrt[4]{q} e^{-\frac{\pi iu}{2K}} \sqrt{-1} \Bigl(1 - e^{\frac{\pi iu}{K}}\Bigr) \Bigl(1 - q^{2}e^{-\frac{\pi iu}{K}}\Bigr) \Bigl(1 - q^{2}e^{ \frac{\pi iu}{K}}\Bigr) \dotsm. \] Now, changing $u$ into~$u + iK'$, and remembering that $e^{-\frac{\pi K'}{K}} = q$, we have \begin{multline*} %[** PP: Re-breaking] \Tag{(14)} \Eta(u + iK') = Cq^{-\frac{1}{4}}e^{\DPtypo{\frac{-\pi iu}{2K}}{-\frac{\pi iu}{2K}}} \sqrt{-1}\Bigl(1 - qe^{ \frac{\pi iu}{K}}\Bigr) \Bigl(1 - qe^{-\frac{\pi iu}{K}}\Bigr) \\ \Bigl(1 - q^{3}e^{ \frac{\pi iu}{K}}\Bigr) \Bigl(1 - q^{3}e^{-\frac{\pi iu}{K}}\Bigr) \dotsm; \end{multline*} and reuniting the factors two by two, this becomes \begin{multline*} %[** PP: Re-breaking] \Tag{(15)} \Eta(u + iK') = C \sqrt{-1} q^{-\frac{1}{4}}e^{-\frac{\pi iu}{2K}} \\ \left(1 - 2q \cos \frac{\pi u}{K} + q^{2}\right) \left(1 - 2q^{3} \cos \frac{\pi u}{K} + q^{6}\right) \dotsm; \end{multline*} and finally, according to \Eqref{equation}{}{(1)}, \[ \Tag{(16)} \Eta (u + iK') = \sqrt{-1} q^{-\frac{1}{4}} e^{-\frac{\pi iu}{2K}} \Theta (u). \] %% -----File: 079.png---Folio 73------- In the same manner, we can get \[ \Tag{(17)} \Theta (u + iK') = \sqrt{-1} q^{-\frac{1}{4}}e^{-\frac{\pi iu}{2K}} \Eta (u). \] Substituting $u+2K$ for~$u$ in \Eqref{equations}{}{(1)} and~\Eqref{}{}{(2)}, we get \begin{align*} \Tag{(18)} \Theta (u + 2K) &= \Theta (u), \\ \Tag{(19)} \Eta (u + 2K) &= -\Eta (u), \end{align*} since $\cos \dfrac{\pi}{K} (u + 2K) = \cos \dfrac{\pi u}{K}$ and $\sin \dfrac{\pi}{2K} (u + 2K) = -\sin \dfrac{\pi u}{2K}$. The comparison of these four equations with \Eqref{equations}{}{(10)},~\Eqref{}{}{(11)}, and~\Eqref{}{}{(12)} shows the periodicity of the elliptic functions. For example, comparing \Eqref{eqs.}{}{(10)} and~\Eqref{}{}{(16)} and~\Eqref{}{}{(17)}, we see that changing~$u$ into $u+iK'$ simply multiplies the numerator and denominator of the second member of \Eqref{eq.}{}{(10)} by the same number, and does not change their ratio. The addition of~$2K$ changes the sign of the function, but not its value. We will define $\Theta_{1}$ and~$\Eta_{1}$ as follows: \begin{align*} \Tag{(20)} \Theta_{1}(x) &= \Theta (x + K); \\ \Tag{(21)} \Eta_{1}(x) &= \Eta (x + K). \end{align*} Hence we get, from \Eqref{equation}{}{(17)}, \begin{DPalign*} \Theta_{1}(x + iK') &= \Theta (x + iK' + K) = \Theta (x + K + iK') \\ &= i\Eta (x + K)e^{-\frac{i\pi}{4K} (2x + 2K + iK')} \\ &= i\Eta_{1}(x)e^{-\frac{i\pi}{4K} (2x + iK')} (-\sqrt{-1}), \\ \lintertext{since} e^{-\frac{i\pi}{2}} &= \cos \frac{\pi}{2} - \sqrt{-1} \sin \frac{\pi}{2} = -\sqrt{-1}; \end{DPalign*} %% -----File: 080.png---Folio 74------- whence \[ \Tag{(22)} \Theta_{1}(x + iK') = \Eta_{1}(x)e^{-\frac{i\pi}{4K}(2x + iK')}. \] In a similar manner we get \[ \Tag[22st]{(22)^*} \Eta_{1}(x + iK') = \Theta_{1}(x)e^{-\frac{i\pi}{4K}(2x + iK')}. \] In \Eqref{eq.}{VIII}{(9)}, Chap.~VIII, put $u = \dfrac{2Kz}{\pi}$, and we get \[ \Tag{(23)} \Theta \left(\frac{2Kz}{\pi}\right) = 1 - 2q \cos 2z + 2q^{4} \cos 4z - \dotsb. \] Now, in this equation, changing~$z$ into $z + \dfrac{\pi}{2}$, and observing \Eqref{eq.}{}{(20)}, we get \[ \Tag{(24)} \Theta_{1} \left(\frac{2Kz}{\pi}\right) = 1 + 2q \cos 2z + 2q^{4} \cos 4z + \dotsb. \] Applying \Eqref{eq.}{}{(22)} to this, we have \begin{align*} &\begin{aligned} \Eta_{1} \left(\frac{2Kz}{\pi}\right) %[** Explicit sizing of () required?] &= \Theta_{1}\left(\frac{2K}{\pi} \Bigl(z + \frac{\pi iK'}{2K}\Bigr)\right) e^{\frac{\pi i}{4K}\left(\frac{4Kz}{\pi} + iK'\right)} \\ &= \Theta_{1}\left(\frac{2K}{\pi} \Bigl(z + \frac{\pi iK'}{2K}\Bigr)\right) e^{iz}q^{\frac{1}{4}} \end{aligned} \\ % &= e^{iz}q^{\frac{1}{4}} \left[1 + 2q \cos 2\Bigl(z + \frac{\pi iK'}{2K}\Bigr) + 2q^{4} \cos 4\Bigl(z + \frac{\pi iK'}{2K}\Bigr) + \dotsb\right] \\ &= e^{iz}q^{\frac{1}{4}} \biggl[1 + q \Bigl(e^{2i\bigl(z + \frac{\pi iK'}{2K}\bigr)} + e^{-2i\bigl(z + \frac{\pi iK'}{2K}\bigr)}\Bigr) \\ & \PadTo{{}=e^{iz}q^{\frac{1}{4}} \biggl[1}{} {} + q^{4} \Bigl(e^{4i\bigl(z + \frac{\pi iK'}{2K}\bigr)} + e^{-4i\bigl(z + \frac{\pi iK'}{2K}\bigr)}\Bigr) + \dotsb\biggr] \\ %% -----File: 081.png---Folio 75------- &= e^{iz} q^{\frac{1}{4}} \left[1 + q(qe^{2iz} + q^{-1}e^{-2iz}) + q^{4}(q^{2}e^{4iz} + q^{-2}e^{-4iz}) + \dotsb \right] \\ %[** PP: Not breaking next two lines] &= e^{iz}q^{\frac{1}{4}} \left[1 + q^{2}e^{2iz} + q^{6}e^{4iz} + \dotsb + e^{-2iz} + q^{2}e^{-4iz} + \dotsb \right] \\ &= q^{\frac{1}{4}} \left[e^{iz} + q^{2}e^{3iz} + q^{6}e^{5iz} + \dotsb + e^{-iz} + q^{2}e^{-3iz} + q^{6}e^{-5iz} + \dotsb \right] \\ &= 2q^{\frac{1}{4}} \left[\cos z + q^{2} \cos 3z + q^{6} \cos 5z + \dotsb\right]; \end{align*} whence \[ \Tag{(25)} \Eta_{1} \left( \frac{2Kz}{\pi} \right) = 2 \sqrt[4]{q} \cos z + 2 \sqrt[4]{q^{9}} \cos 3z + 2 \sqrt[4]{q^{25}} \cos 5z + \dotsb \] In this equation, changing~$z$ into $z - \dfrac{\pi}{2}$, and applying \Eqref{eq.}{}{(21)}, we get \begin{align*} \Tag{(26)} \Eta \left( \frac{2Kz}{\pi} \right) &= 2 \sqrt[4]{q} \sin z - 2 \sqrt[4]{q^{9}} \sin 3z + 2 \sqrt[4]{q^{25}} \sin 5z - \dotsb, \\ \intertext{since} \Eta_{1} \left( \frac{2Kz}{\pi} \right) &= \Eta \left( \frac{2Kz}{\pi} + K \right). \end{align*} We will now determine the constant~$A$ of \Eqref{eq.}{VIII}{(8)}, Chap.~VIII, and \Eqref{eqs.}{}{(1)} and~\Eqref{}{}{(2)} of this chapter. Denote~$A$ by~$f(q)$, and we have \[ \Tag[26st]{(26)^*} \Prod(1 - 2q^{2h - 1} \cos \frac{\pi u}{K} + q^{4h - 2}) = f(q)\Theta (u). \] Substituting herein $u = 0$ and $u = \dfrac{K}{2}$, we have \begin{align*} \Prod(1 - q^{2h - 1})^{2} &= f(q) \Theta (0);\\ \Prod(1 + q^{4h - 2}) &= f(q) \Theta \left( \frac{K}{2} \right). \end{align*} %% -----File: 082.png---Folio 76------- From \Eqref{eq.}{VIII}{(9)}, Chap.~VIII, we get \begin{align*} \Tag{(27)} \Theta (0) &= 1 - 2q + 2q^{4} - 2q^{9} + 2q^{16} - \dotsb; \\ \Tag{(28)} \Theta \left( \frac{K}{2} \right) &= 1 - 2q^{4} + 2q^{16} - 2q^{36} + 2q^{64} - \dotsb; \end{align*} from which we see that $\Theta (0)$ is changed into $\Theta \left( \dfrac{K}{2} \right)$ when we put $q^{4}$~in place of~$q$. Whence \[ \Prod(1 - q^{8h - 4})^{2} = f(q^{4})\Theta \left( \frac{K}{2} \right); \] and therefore \begin{align*} \frac{f(q)}{f(q^{4})} &= \Prod \frac{1 + q^{4h - 2}}{(1 - q^{8h - 4})^{2}}\\ \Tag{(29)} &= \Prod \frac{1}{(1 - q^{8h - 4})(1 - q^{4h - 2})}. \end{align*} Now, the expressions $4h - 2$, $8h - 4$, and~$8h$ give the following series of numbers: \begin{center} \small \begin{tabular}{l<{\qquad}*{18}{@{\,}c@{\,}}} $4h - 2$, &2,& &6,& &10,& &14,& &18,& &22,& &26,& &30,& &34;& \\ $8h - 4$, & &4,& & & &12,& & & &20,& & & &28,& & & &36;\\ $8h$, & & & &8,& & & &16,& & & &24,& & & &32.& & \end{tabular} \end{center} Hence, the three expressions taken together contain all the even numbers, and \[ \Prod(1 - q^{8h - 4})(1 - q^{4h - 2})(1 - q^{8h}) = \Prod(1 - q^{2h}). \] Therefore, multiplying \Eqref{eq.}{}{(29)} by \begin{gather*} \Prod \frac{1 - q^{8h}}{1 - q^{8h}},\\ \intertext{we have} \frac{f(q)}{f(q^{4})} = \Prod \frac{1 - q^{8h}}{1 - q^{2h}}. \end{gather*} %% -----File: 083.png---Folio 77------- Now in this equation, by successive substitutions of~$q^{4}$ for~$q$, we get \[ \begin{array}{r@{}l} \dfrac{f(q^{4})}{f(q^{16})} &{}= \Prod \dfrac{1 - q^{32h} }{1 - q^{8h}}; \\ \dfrac{f(q^{16})}{f(q^{64})} &{}= \Prod \dfrac{1 - q^{128h}}{1 - q^{32h}}; \\ \dfrac{f(q^{64})}{f(q^{256})} &{}= \Prod \dfrac{1 - q^{512h}}{1 - q^{128h}}; \\ \Dots{2} \\ \end{array} \] Now $q$ being less than~$1$, $q^{n}$~tends towards the limit~$0$ as $n$~increases, and consequently $1-q^{n}$ tends towards the limit~$1$. Also, from \Eqref{eq.}{VIII}{(8)}, Chap.~VIII, we see that $f(0) = 1$. Hence, multiplying the above equations together member by member, we have \begin{align*} \Tag{(30)} f(q) &= \Prod \frac{1}{1-q^{2h}}, \\ \intertext{or} \Tag{(31)} A &= \frac{1}{(1 - q^{2})(1 - q^{4})(1 - q^{6}) \dotsm}. \end{align*} Substituting this value in \Eqref{equation}{VIII}{(8)}, Chap.~VIII, we have, after making $u = 0$, \begin{align*} (1 - q)^{2}(1 - q^{3})^{2}(1 - q^{5})^{2} \dotsm &= \frac{1- 2q + 2q^{4} - 2q^{9} + \dotsb} {(1 - q^{2})(1 - q^{4})(1 - q^{6}) \dotsm} \\ &= \frac{\Theta (0)}{(1 - q^{2})(1 - q^{4})(1 - q^{6}) \dotsm}. \end{align*} (See \Eqref{equation}{VIII}{(9)}, Chap.~VIII.) Transposing one of the series of products from the left-hand member, we get \[ (1 - q)(1 - q^{3}) \dotsm = \frac{\Theta (0)}{(1 - q)(1 - q^{2})(1 - q^{3})(1 - q^{4}) \dotsm}. \] %% -----File: 084.png---Folio 78------- Introducing on both sides of the equation the factors $1 - q^{2}$, $1 - q^{4}$, $1 - q^{6}$,~etc., we get \begin{align*} (1 - q) &(1 - q^{2})(1 - q^{3})(1 - q^{4}) \dotsm \\ &= \Theta (0) \frac{1 - q^{2}}{1 - q} · \frac{1 - q^{4}}{1 - q^{2}} · \frac{1 - q^{6}}{1 - q^{3}} · \frac{1 - q^{8}}{1 - q^{4}} \dotsm \\ &= \Theta (0) (1 + q)(1 + q^{2})(1 + q^{3}) \dotsm; \intertext{whence} \Tag{(32)} \Theta (0) &= \frac{(1 - q)(1 - q^{2})(1 - q^{3})\DPtypo{}{\dotsm}} {(1 + q)(1 + q^{2})(1 + q^{3})\DPtypo{}{\dotsm}}. \end{align*} Resuming \Eqref{equation}{VII}{(20)}, Chap.~VII, and dividing both members of the equation by~$u$, we have \[ \frac{\sn u}{u} = \frac{2 \sqrt[4]{q}}{\sqrt{k}}\, \frac{\sin \dfrac{\pi u}{2K}}{u} \Prod \frac{1 - 2q^{2h} \cos \dfrac{\pi u}{K} + q^{4h}} {1 - 2q^{2h-1} \cos \dfrac{\pi u}{K} + q^{4h-2}}. \] This, for~$u = 0$, since the limiting value of $\dfrac{\sn u}{u}$ for~$u = 0$ is~$1$, and of $\dfrac{\sin \dfrac{\pi u}{2K}}{u}$ for~$x=0$ is~$\dfrac{\pi}{2K}$, becomes \begin{align*} 1 &= \frac{\sqrt[4]{q}}{\sqrt{k}} · \frac{\pi}{K} · \frac{(1 - q^{2})^{2}(1 - q^{4})^{2}(1 - q^{6})^{2} \dotsm} {(1 - q)^{2}(1 - q^{3})^{2}(1 - q^{5})^{2} \dotsm}, \intertext{or} \Tag{(33)} \frac{\sqrt{k} K}{\pi \sqrt[4]{q}} &= \left[\frac{(1 - q^{2})(1 - q^{4})(1 - q^{6}) \dotsm} {(1 - q)(1 - q^{3})(1 - q^{5}) \dotsm}\right]^{2}. \end{align*} Further, from \Eqref{equation}{VII}{(21)}, Chap.~VII, for~$u=0$, we have \[ \Tag{(34)} \frac{\sqrt{k}}{2\sqrt{k'} \sqrt[4]{q}} = \left[\frac{(1 + q^{2})(1 + q^{4})(1 + q^{6}) \dotsm} {(1 - q)(1 - q^{3})(1 - q^{5}) \dotsm}\right]^{2}. \] %% -----File: 085.png---Folio 79------- The quotient of these two equations gives \[ \Tag{(35)} \frac{2\sqrt{k'}K}{\pi} = \left[\frac{(1 - q^{2})(1 - q^{4})(1 - q^{6}) \dotsm} {(1 + q^{2})(1 + q^{4})(1 + q^{6}) \dotsm}\right]^{2}; \] or, substituting the value of~$\sqrt{k'}$ from \Eqref{eqs.}{VII}{(18)} and~\Eqref{}{VII}{(19)}, Chap.~VII, \[ \Tag{(36)} \frac{2k'K}{\pi} = \left[\frac{(1 - q)(1 - q^{2})(1 - q^{3}) \dotsm} {(1 + q)(1 + q^{2})(1 + q^{3}) \dotsm}\right]^{2}. \] Comparing this with \Eqref{equation}{}{(32)}, we easily get \[ \Tag{(37)} \Theta (0) = \sqrt{\frac{2k'K}{\pi}}. \] From \Eqref{equation}{VIII}{(9)}, Chap.~VIII, making~$u=K$, we get \[ \Tag{(38)} \Theta (K) = 1 + 2q + 2q^{4} + 2q^{9} + 2q^{16} + \dotsb. \] Making $z=0$ in \Eqref{equation}{IX}{(24)}, Chap.~IX, we have \[ \Tag{(39)} \Theta_{1} (0) = 1 + 2q + 2q^{4} + 2q^{9} + \dotsb. \] This might also have been derived from \Eqref{eq.}{}{(38)} by observing that \[ \DPtypo{\Theta_{1}}{\Theta} (0 + K) = \Theta_{1}(0) = \Theta (K). \] Knowing $\Theta (0)$, it is easy to deduce $\Theta (K)$~and~$\Eta (K)$. From \Eqref{equation}{}{(7)} we have \[ \dn u = \sqrt{k'}\, \frac{\Theta (u + K)}{\Theta (u)}. \] Making $u=0$, we have, since $\dn (0) = 1$, \[ \Tag{(40)} \Theta (K) = \frac{\Theta (0)}{\sqrt{k'}}. \] %% -----File: 086.png---Folio 80------- From \Eqref{equation}{}{(5)} we get, in the same manner, \[ \Tag{(41)} \Eta (K) = \sqrt{\frac{k'}{k}}\, \Theta (0). \] From \Eqref{eq.}{IX}{(12)}, Chap.~IX, we have \[ \Tag[41st]{(41)^*} \dn u = \sqrt{1 - k^{2} \sin^{2} \phi} = \sqrt{k'}\, \frac{\Theta_{1}(u)}{\Theta (u)}; \] and putting $x = \dfrac{\pi u}{2K}$, we have \[ \Tag{(42)} \frac{\dn u}{\sqrt{k'}} = \frac{1 + 2q \cos 2x + 2q^{4} \cos 4x + 2q^{9} \cos 6x + \dotsb} {1 - 2q \cos 2x + 2q^{4} \cos 4x - 2q^{9} \cos 6x + \dotsb}. \] Putting \[ \Tag[42st]{(42)^*} \frac{\dn u}{\sqrt{k'}} = \cot \gamma, \] we have \[ \frac{\cot \gamma - 1}{\cot \gamma + 1} = \tan (45° - \gamma) = 2q \frac{\cos2x + q^{8}(4 \cos^{3} 2x - 3 \cos 2x) + \dotsb} {1 + q^{4}(4 \cos^{2} 2x - 2)}; \] whence \begin{multline*} \Tag{(43)} \cos 2x = \frac{\tan (45° - \gamma) [1 + q^{4}(4 \cos^{2}2x - 2)]}{2q} \\ - q^{8}(4 \cos^{3}2x - 3\cos2x) - \dotsb, \end{multline*} and approximately, \[ \Tag{(44)} \cos 2x = \frac{\tan (45° - \gamma)}{2q}. \] From \Eqref{equations}{IX}{(37)} and~\Eqref{}{IX}{(40)}, Chap.~IX, we have \begin{align*} \Tag{(45)} x &= \frac{u}{\Theta^{2}(K)}; \\ \intertext{whence} \Tag{(46)} u &= x\Theta^{2}(K). \end{align*} %% -----File: 087.png---Folio 81------- \Chapter{X}{Elliptic Integrals of the Second Order.} \First{From} Chap.~I, \Eqref{equation}{I}{(19)}, we have \[ E(k, \phi) = \int_{0}^{\phi} \sqrt{1 - k^{2} \sin^{2} \phi} · d\phi = \int_{0}^{\phi} \Delta \phi · d\phi. \] From this we have \[ E(\phi) + E(\psi) = \int_{0}^{\phi} \Delta \phi · d\phi + \int_{0}^{\psi} \Delta \phi · d\phi. \] Put \[ \Tag{(1)} E\phi + E\psi = S. \] Differentiating, we get \[ \Tag{(2)} \Delta \phi · d\phi + \Delta \psi · d\psi = dS. \] But we have, Chap.~II, \Eqref{equation}{II}{(2)}, \[ \frac{d\phi}{\Delta \phi} + \frac{d\psi}{\Delta \psi} = 0, \] or \[ \Tag{(3)} \Delta \psi · d\phi + \Delta \phi · d\psi = 0. \] Adding equations \Eqref{}{}{(2)}~and~\Eqref{}{}{(3)}, we get \[ \Tag{(4)} (\Delta \phi + \Delta \psi)(d\phi + d\psi) = dS. \] %% -----File: 088.png---Folio 82------- Substituting $\cos \mu$ from \Eqref{eq.}{II}{(5)}, in \Eqref[5st]{eq.}{II}{(5)^*}, Chap.~II, we get \[ \Tag{(5)} \left\{ \begin{aligned} \Delta\phi &= \frac{\sin\phi \cos\psi\, \Delta\mu + \cos\phi \sin\psi}{\sin\mu}, \\ \Delta\psi &= \frac{\sin\psi \cos\phi\, \Delta\mu + \cos\psi \sin\phi}{\sin\mu}; \end{aligned} \right. \] whence \[ \Tag{(6)} \Delta \phi ± \Delta \psi = \frac{\Delta \mu ± 1}{\sin \mu} \sin (\phi ± \psi). \] Substituting in \Eqref{equation}{}{(4)}, we have \begin{align*} dS &= \frac{\Delta \mu + 1}{\sin \mu} \sin (\phi + \psi)\,d(\phi + \psi) \\ \Tag{(7)} &= - \frac{\Delta \mu + 1}{\sin \mu}\,d \cos (\phi + \psi). \end{align*} Integrating equation~\Eqref{}{}{(7)}, we have \[ E\phi + E\psi = \frac{\Delta \mu + 1}{\sin \mu} \left[C - \cos (\phi + \psi)\right]. \] The constant of integration,~$C$, is determined by making $\phi = 0$; in this case $\psi = \mu$, $E\phi = 0$, $E\psi = E\mu$, and $S = E\mu$; whence \[ E\mu = \frac{\Delta \mu + 1}{\sin \mu} (C - \cos \mu), \] and by subtraction, \[ E\phi + E\psi - E\mu = \frac{\Delta \mu + 1}{\sin \mu} (\cos \mu - \cos \phi \cos \psi + \sin \phi \sin \psi). \] But, Chap.~II, \Eqref{eq.}{II}{(5)}, \[ \cos\mu - \cos\phi \cos\psi = - \sin\phi \sin\psi\, \Delta\mu; \] %% -----File: 089.png---Folio 83------- whence \[ E\phi + E\psi - E\mu = \frac{1 - \Delta^{2}\mu}{\sin \mu} \sin \phi \sin \psi \] whence \[ \Tag{(8)} E\phi + E\psi = E\mu + k^{2} \sin\phi \sin\psi \sin\mu. \] When $\phi = \psi$, we have \begin{align*} \Tag{(9)} E\mu &= 2E\phi - k^{2} \sin^{2} \phi \sin\mu. \\ \intertext{But in that case} \Tag{(10)} \cos \mu &= \cos^{2} \phi - \sin^{2} \phi\, \Delta \mu; \\ \intertext{whence} \Tag{(11)} \sin \phi &= \sqrt{\frac{1 - \cos \mu}{1 + \Delta \mu}}. \end{align*} Let $\phi$, $\phi_{\frac{1}{2}}$, $\phi_{\frac{1}{4}}$,~etc., be such values as will satisfy the equations \begin{align*} \Tag{(12)} E\phi &= 2E\phi_{\frac{1}{2}} - k^{2} \sin^{2} \phi_{\frac{1}{2}} \sin \phi,\\ E\phi_{\frac{1}{2}} &= 2E\phi_{\frac{1}{4}} - k^{2} \sin^{2} \phi_{\frac{1}{4}} \sin \phi_{\frac{1}{2}},\\ &\PadTo{= 2E\phi_{\frac{1}{4}}}{\text{etc.}} \PadTo{ - k^{2} \sin^{2} \phi_{\frac{1}{4}} \sin \phi_{\frac{1}{2}}}{\text{etc.}} \end{align*} Assume an auxiliary angle~$\gamma$, such that \[ \Tag{(13)} \sin\gamma = k \sin\phi; \] whence \[ \Delta\phi = \cos\gamma, \] and Chap.~IV, \Eqref{eq.}{IV}{(24)}, \[ \Tag{(14)} \sin\phi_{\frac{1}{2}} = \frac{\sin \frac{1}{2}\phi}{\cos \frac{1}{2}\gamma}. \] %% -----File: 090.png---Folio 84------- Applying eqs.\ \Eqref{}{}{(13)}~and~\Eqref{}{}{(14)} successively, we get \[ \Tag{(15)} \left\{ \begin{array}{r@{}l} \sin \phi_{\frac{1}{2}} &{}= \dfrac{\sin \frac{1}{2} \phi}{\cos \frac{1}{2} \gamma},\quad \sin \gamma_{\frac{1}{2}} = k \sin \phi_{\frac{1}{2}}; \\ \sin \phi_{\frac{1}{4}} &{}= \dfrac{\sin \frac{1}{2} \phi_{\frac{1}{2}}} {\cos \frac{1}{2} \gamma_{\frac{1}{2}}},\quad \sin \gamma_{\frac{1}{4}} = k \sin \phi_{\frac{1}{4}}; \\ \Dots{2} \\ \sin \phi_{\frac{1}{2^{n}}} &{}= \dfrac{\sin \frac{1}{2} \phi_{\frac{1}{2^{n - 1}}}} {\cos \frac{1}{2} \gamma_{\frac{1}{2^{n - 1}}}}; \end{array} \right. \] whence \begin{align*}%[** PP: Unbalanced parentheses in original] \Tag{(16)} E \phi &= 2^{n} E \phi_{\frac{1}{2^{n}}} - \Bigl(\sin \phi \sin^{2} \gamma_{\frac{1}{2}} + 2 \sin \phi_{\frac{1}{2}} \sin^{2} \gamma_{\frac{1}{4}} \\ &+ 2^{2} \sin \phi_{\frac{1}{4}} \sin^{2} \gamma_{\frac{1}{8}} + \dotsb 2^{n-1} \sin \phi_{\frac{1}{2^{n}}} \sin^{2} \gamma_{\frac{1}{2^{n - 1}}} \Bigr) \end{align*} %[** PP: Modernizing factorial notation] To find the limiting value, $E \phi_{\frac{1}{n}}$, we have, by the Binomial Theorem, since $\sin \phi = 1 - \dfrac{\phi^{3}}{3!} + \dfrac{\phi^{5}}{5!} -{}$ etc., \begin{align*} \Delta \phi &= (1 - k^{2} \sin^{2} \phi)^{\frac{1}{2}}\\ &= 1 - \frac{k^{2}}{2} \left( \phi - \frac{\phi^{3}}{6} \right)^{2} %[** PP: Fourth power in next line missing in original] - \frac{k^{4}}{8} \left( \phi - \frac{\phi^{3}}{6} \right)^{4} + \dotsb\\ &= 1 - \frac{k^{2}}{2} \phi^{2} + \left( \frac{k^{2}}{6} - \frac{k^{4}}{8} \right) \phi^{4}. %[** PP: Series truncated to polynomial, presumably 4th power approximation] \end{align*} Whence \begin{align*} E k \phi_{\frac{1}{2^{n}}} &= \int_{0}^{\phi_{n}} \Delta \phi_{\frac{1}{2^{n}}}\, d\phi\\ \Tag{(17)} &= \phi_{\frac{1}{2^{n}}} - \frac{k^{2}}{6} \phi^{3}_{\frac{1}{2^{n}}} + \frac{k^{2}(4 - 3k^{2})}{120} \phi^{5}_{\frac{1}{2^{n}}}. \end{align*} %% -----File: 091.png---Folio 85------- Substituting in \Eqref{eq.}{}{(16)} the numerical values derived from \Eqref{equations}{}{(15)} and~\Eqref{}{}{(17)}, we are enabled to determine the value of~$E\phi$. Landen's Transformation can also be applied to Elliptic Integrals of this class. From \Eqref{eq.}{IV}{(11)}, Chap.~IV, we get, by easy transformation, \[ \Tag{(18)} \sin^{2} 2\phi = \sin^{2} \phi_{1} (1 + k_{0} + 2k_{0} \cos 2\phi). \] From this we easily get \begin{align*} 2k_{0} \cos 2\phi \sin^{2} \phi_{1} &= \sin^{2} 2\phi - \sin^{2} \phi_{1} - k_{0}^{2} \sin^{2} \phi_{1} \\ &= 1 - \cos^{2} 2\phi - \sin^{2} \phi_{1} - k_{0}^{2} \sin^{2} \phi_{1} \\ &= \Delta^{2}k_{0}\phi_{1} - \sin^{2}\phi_{1} - \cos^{2}2\phi; \end{align*} whence \[ \cos^{2} 2\phi + 2k_{0} \sin^{2}\phi_{1} \cos 2\phi = \Delta^{2}k_{0}\phi_{1} - \sin^{2}\phi_{1}; \] and from this, \begin{align*} \cos 2\phi &= -k_{0} \sin^{2} \phi_{1} ± \sqrt{\Delta^{2}k_{0}\phi_{1} - \sin^{2} \phi_{1} + k_{0}^{2} \sin^{4} \phi_{1}} \\ \Tag{(19)} &= \cos \phi_{1} \Delta k_{0}\phi_{1} - k_{0} \sin^{2} \phi_{1}; \end{align*} whence, also, \begin{align*} 1 - \cos^{2} 2\phi &= 1 - \cos^{2} \phi_{1}\, \Delta^{2}\phi_{1} + 2k \sin^{2}\phi_{1} \cos \phi_{1}\, \Delta k_{0}\phi_{1} - k_{0}^{2} \sin^{4} \phi_{1} \\ &= \sin^{2} \phi_{1} (1 + k_{0}^{2} \cos^{2} \phi_{1} + 2k_{0} \cos \phi_{1}\, \Delta k_{0}\phi_{1} - k_{0}^{2} \sin^{2} \phi_{1}) \end{align*} and \[ \Tag{(20)} \sin 2\phi = \sin \phi_{1} (\Delta k_{0}\phi_{1} + k_{0} \cos \phi_{1}). \] Differentiating \Eqref{equation}{}{(19)}, we get \[ 2 \sin 2\phi \frac{d\phi}{d\phi_{1}} = \sin \phi_{1} \frac{(k_{0} \cos \phi_{1} + \Delta k_{0}\phi_{1})^{2}} {\Delta k_{0} \phi_{1}}. \] Dividing this by \Eqref{equation}{}{(20)}, we have \[ \frac{2d\phi}{d\phi_{1}} = \frac{k_{0} \cos \phi_{1} + \Delta k_{0}\phi_{1}}{\Delta k_{0}\phi_{1}}. \] %% -----File: 092.png---Folio 86------- But from~\Eqref{}{}{(19)}, and \Eqref{eq.}{IV}{(6)}, Chap.~IV, \begin{align*} k^{2} \sin^{2} \phi &= \frac{k^{2}(1 - \cos 2\phi)}{2} \\ &= \frac{2k_{0}}{(1 + k_{0})^{2}} \{1 + k_{0} \sin^{2} \phi_{1} - \cos \phi_{1} \Delta k_{0} \phi_{1}\}; \intertext{whence} \Delta k\, \phi &= \frac{\Delta k_{0}\phi_{1} + k_{0} \cos \phi_{1}}{1 + k_{0}}, \intertext{and} 2\Delta k\, \phi · \frac{d\phi}{d\phi_{1}} &= \frac{(k_{0} \cos \phi_{1} + \Delta k_{0}\, \phi_{1})^{2}} {(1 + k_{0}) \Delta k_{0}\, \phi_{1}}, \intertext{and} d\phi\, \Delta k\, \phi &= \frac{d\phi_{1}}{\Delta k_{0} \phi_{1}} · \frac{(k_{0} \cos \phi_{1} + \Delta k_{0}\, \phi_{1})^{2}}{2(1 + k_{0})}. \end{align*} This gives immediately, by integration, \begin{align*} Ek\phi &= \frac{1}{2(1+k_{0})} \int \frac{d\phi_{1}}{\Delta k_{0}\, \phi_{1}} \{k_{0} \cos \phi_{1} + \Delta k_{0} \phi_{1}\}^{2} \\ &=\frac{1}{2(1+k_{0})} \int \frac{d\phi_{1}}{\Delta k_{0}\, \phi_{1}} \{2\Delta^{2}k_{0}\, \phi_{1} + 2k_{0} \cos \phi_{1} \Delta k_{0}\phi_{1} - k_{1}'^{2}\} \\ \Tag{(21)} &= \frac{Ek_{0}\phi_{1}}{1+k_{0}} + \frac{k_{0} \sin \phi_{1}}{1+k_{0}} - \tfrac{1}{2} (1 - k_{0})Fk_{0}\phi_{1}. \end{align*} Thus the value of~$Ek\phi$ is made to depend upon~$Ek_{0}\phi_{1}$ (containing a smaller modulus and a larger amplitude), and upon the integral of the first class,~$Fk_{0}\phi_{1}$; $k_{0}$,~$\phi_{1}$,~etc., being determined by the \Eqref{formulæ}{IV}{(6)} to~\Eqref{}{IV}{(12)} of Chap.~IV. By successive applications of \Eqref{equation}{}{(21)}, $Ek\phi$~may be made to depend ultimately upon~$Ek_{0n}\phi_{n}$, where $k_{0n}$~approximates to zero and $Ek_{0n}\phi_{n}$ to~$\phi_{n}$. Or, by reversing, it may be made to depend upon~$Ek_{n}\phi_{0n}$, where $k_{n}$~approximates to unity and $Ek_{n}\phi_{0n}$ to~$-\cos \phi_{0n}$. %% -----File: 093.png---Folio 87------- To facilitate this, assume \[ Gk\phi = Ek\phi - Fk\phi. \] Subtracting from \Eqref{equation}{}{(21)} the equation \[ Fk\phi = \frac{1 + k_{0}}{2} Fk_{0}\phi_{1} \text{ (see \Eqref{eq.}{IV}{(13)}, Chap.~IV)}, \] we have \[ Gk\phi = \frac{1}{1 + k_{0}} (Gk_{0}\phi_{1} + k_{0} \sin \phi_{1} - k_{0}\, Fk_{0}\, \phi_{1}). \] Repeated applications of this give \[ \begin{array}{r@{}l} Gk_{0}\phi_{1} &{}= \dfrac{1}{1 + k_{00}} (Gk_{00}\phi_{2} + k_{00} \sin \phi_{2} - k_{00}\, Fk_{00}\, \phi_{2}),\\ \Dots{2} \\ \llap{$Gk_{0(n - 1)}\phi_{n - 1}$} &{}= \dfrac{1}{1 + k_{0n}} \rlap{$(Gk_{0n}\phi_{n} + k_{0n} \sin \phi_{n} - k_{0n}\, Fk_{0n}\, \phi_{n})$.} \end{array} \] Whence \[ \Tag{(22)} Gk\phi = \sum_{n}^{1} %[** PP: \textstyle sum in original] \Biggl\{ \frac{k_{0n}(\sin \phi_{n} - Fk_{0n}\phi_{n})} {\Prodlim(1 + k_{0n})} \Biggr\} + \frac{Gk_{0n}\, \phi_{n}}{\Prodlim(1 + k_{0n})}. \] But since (compare \Eqref{eq.}{IV}{(13)}, Chap.~IV) \[%[** PP: Next two displays aligned in original] Fk\phi = \frac{Fk_{0n}\, \phi_{n}\Prodlim(1 + k_{0n})}{2^{n}}, \] or \[ \Tag{(23)} \frac{Fk_{0n}\, \phi_{n}}{\Prodlim (1 + k_{0n})} = \frac{2^{n} Fk\, \phi}{\Prodlim(1 + k_{0n})^{2}}; \] %% -----File: 094.png---Folio 88------- and since, also, (compare \Eqref{eq.}{IV}{(6)}, Chap.~IV,) \[ \frac{k^{2}_{0(n-1)}}{k_{0n}} = \frac{2^{2}}{(1 + k_{0n})^{2}}, \] we have \begin{align*} \Tag{(24)} \frac{2^{n}k_{0n}}{\Prodlim(1 + k_{0n})^{2}} &= \frac{k_{0n}}{2^{n}} \Prodlim \frac{k^{2}_{0(n-1)}}{k_{0n}} \\ &= \frac{k_{0n}}{2^{n}} \Prodlim \frac{k_{0(n-1)}}{k_{0n}} \Prodlim k_{0(n-1)} \\ &= \frac{k_{0n}}{2^{n}} · \frac{k}{k_{0}} · \frac{k_{0}}{k_{00}} \dotsm \frac{k_{0(n-1)}}{k_{0n}} · k\Prodlim[2] k_{0(n-1)} \\ &= \frac{k^{2}}{2^{n}} \Prodlim[2] k_{0(n-1)}. \end{align*} Substituting these values in \Eqref{equation}{}{(22)}, and neglecting the term containing $Gk_{0n}\phi_{n}$ since, carried to its limiting value, \begin{DPalign*} Gk_{0n}\phi_{n} &= Ek_{0n}\phi_{n} - Fk_{0n}\phi_{n} \\ &= \phi_{n} - \phi_{n} = 0, \rintertext{\llap{($n =$ limiting value,)}} \end{DPalign*} we have \begin{gather*} \Tag{(25)} Gk\phi = \sum_{n}^{1} \Biggl\{ \frac{k\sqrt{k_{0n}} \sin \phi_{n} \Prodlim[2] \sqrt{k_{0(n-1)}} - k^{2} \Prodlim[2] k_{0(n-1)}}{2^{n}} \Biggr\} \\ \begin{aligned} &= k \left[\frac{\sqrt{k_{0}}}{2} \sin \phi_{1} + \frac{\sqrt{k_{0}k_{00}}}{2^{2}} \sin \phi_{2} + \frac{\sqrt{k_{0}k_{00}k_{03}}}{2^{3}} \sin \phi_{3} + \dotsb\right] \\ & \quad - \frac{k^{2}}{2} \left[1 + \frac{k_{0}}{2} + \frac{k_{0}k_{00}}{2^{2}} + \frac{k_{0}k_{00}k_{03}}{2^{3}} + \dotsb\right]; \end{aligned} \end{gather*} whence \begin{gather*} \Tag{(26)} Ek\phi = Fk\phi \left[1 - \frac{k^{2}}{2} \left(1 + \frac{k_{0}}{2} + \frac{k_{0}k_{00}}{2^{2}} + \dotsb\right)\right] \\ + k \left[\frac{\sqrt{k_{0}}}{2} \sin \phi_{1} + \frac{\sqrt{k_{0}k_{00}}}{2^{2}} \sin \phi_{2} + \frac{\sqrt{k_{0}k_{00}k_{03}}}{2^{3}} \sin \phi_{3} + \dotsb\right]. \end{gather*} %% -----File: 095.png---Folio 89------- From \Eqref{eq.}{V}{(3)}, Chap.~V, we see that when $\phi = \dfrac{\pi}{2}$, \[ \phi_{n} = 2^{n-1} \pi. \] Substituting these values in \Eqref{equation}{}{(26)}, we have for a complete Elliptic Integral of the second class, \begin{multline*} \Tag{(27)} E \left(k, \frac{\pi}{2}\right) = \\ F \left(k, \frac{\pi}{2}\right) \left[1 - \frac{k^{2}}{2} \left(1 + \frac{k_{0}}{2} + \frac{k_{0}k_{00}}{2^{2}} + \frac{k_{0}k_{00}k_{03}}{2^{3}} + \dotsb\right)\right]. \end{multline*} In a similar manner we could have found the formula for $E (k, \phi)$ in terms of an increasing modulus, viz., \begin{align*} \Tag{(28)} E (k, \phi) &= F (k, \phi) \biggl[1 + k\biggl(1 + \frac{2}{k_{1}} + \frac{2^{2}}{k_{1}k_{2}} + \frac{2^{3}}{k_{1}k_{2}k_{3}} + \dotsb \\ &{} + \frac{2^{n-2}}{k_{1}k_{2} \dotsm k_{n-2}} - \frac{2^{n-1}}{k_{1}k_{2} \dotsm k_{n-1}}\biggr)\biggr] \\ &{} - k \biggl[\sin \phi + \frac{2}{\sqrt{k}} \sin \phi_{1} + \frac{2^{2}}{\sqrt{kk_{1}}} \sin \phi_{2} + \dotsb \\ &{} + \frac{2^{n-1}}{\sqrt{kk_{1} \dotsm k_{n-2}}} \sin \phi_{n-1} - \frac{2^{n}}{\sqrt{kk_{1} \dotsm k_{n-1}}} \sin \phi_{n}\biggr]. \end{align*} %% -----File: 096.png---Folio 90------- \Chapter{XI}{Elliptic Integrals of the Third Order.} \First{The} Elliptic Integral of the third order is \[ \Tag{(1)} \Pi (n, k, \phi) = \int_{0}^{\phi} \frac{d\phi}{(1 + n \sin^{2} \phi)\, \Delta \phi}. \] Put \[ \Tag{(2)} \Pi (\phi) + \Pi (\psi) = S; \] whence we have immediately \[ \Tag{(3)} dS = \frac{d\phi}{(1 + n \sin^{2} \phi)\, \Delta \phi} + \frac{d\psi}{(1 + n \sin^{2} \psi)\, \Delta \psi}. \] But, \Eqref{eq.}{II}{(2)}, Chap.~II, \[ \Tag{(4)} \frac{d\phi}{\Delta \phi} + \frac{d\psi}{\Delta \psi} = 0; \] whence \begin{align*} dS &= \left(\frac{1}{1 + n \sin^{2} \phi} - \frac{1}{1 + n \sin^{2} \psi}\right) \frac{d\phi}{\Delta \phi} \\ \Tag{(5)} &= \frac{n (\sin^{2} \psi - \sin^{2} \phi)} {(1 + n \sin^{2} \phi)(1 + n \sin^{2} \psi)} · \frac{d\phi}{\Delta \phi}. \end{align*} From \Eqref{equation}{X}{(8)}, Chap.~X, we get by differentiation, since $\sigma$ (or~$\mu$) is constant, \begin{align*} \Delta \phi · d \phi + \Delta \psi · d\psi &= k^{2} \sin \sigma\, d(\sin \phi \sin \psi), \intertext{or, from \Eqref{equation}{}{(3)},} (\sin^{2} \psi - \sin^{2} \phi)\, \frac{d\phi}{\Delta \phi} &= \sin \sigma\, d(\sin \phi \sin \psi). \end{align*} %% -----File: 097.png---Folio 91------- This, introduced into \Eqref{equation}{}{(5)}, gives \[ dS = \frac{n \sin \sigma\, d (\sin \phi \sin \psi)} {1 + n (\sin^{2} \phi + \sin^{2} \psi) + n^{2} \sin^{2} \phi \sin^{2} \psi}. \] Put \[ \sin \phi \sin \psi = q, \quad \sin^{2} \phi + \sin^{2} \psi = p; \] whence \[ \Tag{(6)} dS = \frac{n \sin \sigma\, dq}{1 + np + n^{2}p^{2}}. \] From \Eqref{equation}{II}{(5)}, Chap.~II, we have \[ \cos \sigma = \cos\phi \cos\psi - \sin\phi \sin\psi\, \Delta\sigma, \] from which we easily get \begin{align*} (\cos \sigma + q \Delta \sigma)^{2} &= \cos^{2} \phi \cos^{2} \psi\DPtypo{)}{} \\ &= (1 - \sin^{2} \phi)(1 - \sin^{2} \psi) \\ &= 1 - p + q^{2}, \end{align*} and thence \begin{align*} p &= 1 + q^{2} - (\cos \sigma + q\, \Delta \sigma)^{2} \\ &= \sin^{2} \sigma - 2 \cos \sigma \Delta \sigma q + k^{2} \sin^{2} \sigma · q^{2}. \end{align*} This, substituted in \Eqref{eq.}{}{(6)}, gives \begin{align*} dS &= \frac{n \sin \sigma\, dq} {1 + n \sin^{2} \sigma - 2n \cos \sigma \Delta \sigma q + n(n + k^{2} \sin^{2} \sigma) q^{2}} \\ &= \frac{n \sin \sigma\, dq}{A - 2Bq +Cq^{2}}, \end{align*} where \begin{align*} A &= 1 + n \sin^{2} \sigma, \\ B &= n \cos \sigma\, \Delta \sigma, \\ C &= nk^{2} \sin^{2} \sigma + n^{2}. \end{align*} %% -----File: 098.png---Folio 92------- From this we get \[ S = n \sin \sigma \int \frac{dq}{A - 2Bq + Cq^{2}} + \text{Const.} \] In order to determine the constant of integration we must observe that for $\phi = 0$, $\psi = \sigma$ and~$q = 0$; whence \begin{align*} \Pi \sigma &= n \sin \sigma \int_{q=0} \frac{dq}{A - 2Bq + Cq^{2}} + \text{Const.}; \intertext{whence} S &= \Pi \sigma + n \sin \sigma \int_{0}^{q} \frac{dq}{A - 2Bq + Cq^{2}}, \intertext{or} \Tag{(7)} \Pi \phi + \Pi \psi &= \Pi \sigma + n \sin \sigma \int_{0}^{q} \frac{dq}{A - 2Bq + Cq^{2}}. \end{align*} But we have \begin{align*} dS &= \frac{CM\, dq}{AC - B^{2} + (Cq - B)^{2}} \\ &= \frac{CM}{AC - B^{2}} · \frac{dq}{1 + \left(\dfrac{Cq - B}{\sqrt{AC - B^{2}}}\right)^{2}} \\ &= \frac{M}{\sqrt{AC-B^{2}}} · \frac{\dfrac{C\, dq}{\sqrt{AC - B^{2}}}} {1 + \left(\dfrac{Cq - B}{\sqrt{AC - B^{2}}}\right)^{2}} \end{align*} where $M = n \sin \sigma$. The integral of the second member is \[ \frac{M}{\sqrt{AC - B^{2}}} \tan^{-1} \frac{Cq - B}{\sqrt{AC - B^{2}}}; \] %% -----File: 099.png---Folio 93------- whence \[ \int_{0}^{q} dS = S_{1} = \frac{M}{\sqrt{AC - B^{2}}} \left[\tan^{-1} \frac{Cq - B}{\sqrt{AC - B^{2}}} + \tan^{-1} \frac{B}{\sqrt{AC - B^{2}}}\right]; \] or, since \begin{gather*} \tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy}, \\ S_{1} = \frac{M}{\sqrt{AC - B^{2}}} \tan^{-1} \frac{q\sqrt{AC - B^{2}}}{A - Bq}. \end{gather*} Substituting the values of $A$,~$B$,~$C$ and~$M$, we have \begin{align*} AC - B^{2} &= n(1 + n - \Delta^{2} \sigma)(1 + n \sin^{2} \sigma) - n^{2} \cos^{2} \sigma\, \Delta^{2} \sigma \\ &= n(1 + n - \Delta^{2} \sigma + n(1 + n) \sin^{2} \sigma - n\, \Delta^{2} \sigma) \\ &= n(1 + n)(1 - \Delta^{2} \sigma + n \sin^{2} \sigma) \\ &= n(1 + n)(k^{2} + n) \sin^{2} \sigma; \end{align*} and putting \[ \frac{(1 + n)(k^{2} + n)}{n} = \Omega, \] we have \[ \sqrt{AC - B^{2}} = n \sqrt{\Omega} \sin \sigma. \] Substituting these values in \Eqref{eq.}{}{(7)}, we have \begin{gather*} \Pi (n, k, \phi) + \Pi (n, k, \psi) - \Pi (n, k, \sigma) = S_{1} \\ = \frac{1}{\sqrt{\Omega}} \tan^{-1} \frac{n\sqrt{\Omega} \sin \phi \sin \psi \sin \sigma} {1 + n \sin^{2} \sigma - n \sin \phi \sin \psi \cos \sigma\, \Delta \sigma}. \end{gather*} %% -----File: 100.png---Folio 94------- \Chapter[Numerical Calculations. q.]{XII}{Numerical Calculations. $q$.} \Section{CALCULATION OF THE VALUE OF~$q$.} \First{From} \Eqref{eq.}{IX}{(7)}, Chap.~IX, we have \[ \dn u = \sqrt{k'}\, \frac{\Theta (u + K)}{\Theta (u)}; \] whence, \Eqref{eq.}{IV}{(9)}, Chap.~IV, \Eqref{eqs.}{IX}{(27)} and~\Eqref{}{IX}{(39)}, Chap.~IX, \begin{align*} \Tag{(1)} \sqrt{\cos \theta} &= \frac{1 - 2q + 2q^{4} - 2q^{9} + 2q^{16} - \dotsb} {1 + 2q + 2q^{4} + 2q^{9} + 2q^{16} + \dotsb} \\ &= 1 - 4q + 8q^{2} - 16q^{3} + 32q^{4} - 56q^{5} + \dotsb. \end{align*} The first five terms of this series can be represented by \[ \sqrt{\cos \theta} = \frac{1 - 2q}{1 + 2q}. \] From this we get \[ \Tag{(2)} q = \frac{1}{2} · \frac{1 - \sqrt{\cos \theta}}{1 + \sqrt{\cos \theta}}, \] which is exact up to the term containing~$q^{5}$. Or we can deduce a more exact formula as follows: From \Eqref{eq.}{}{(1)}, \begin{align*} \frac{1 + \sqrt{\cos \theta}}{1 - \sqrt{\cos \theta}} &= \frac{\sqrt{1 + \tan^{2} \frac{1}{2} \theta} + \sqrt{1 - \tan^{2} \frac{1}{2} \theta}} {\sqrt{1 + \tan^{2} \frac{1}{2} \theta} - \sqrt{1 - \tan^{2} \frac{1}{2} \theta}} \\ &= \frac{ 1 + 2q^{4} + 2q^{16} + \dotsb} {2q + 2q^{9} + 2q^{25} + \dotsb}; \end{align*} %% -----File: 101.png---Folio 95------- whence, by the method of indeterminate coefficients, \begin{align*} \Tag{(3)} q &= \tfrac{1}{4} \tan^{2} \frac{\theta}{2} + \tfrac{1}{16} \tan^{\DPtypo{2}{6}} \frac{\theta}{2} + \tfrac{\DPtypo{57}{17}}{512} \tan^{10} \frac{\theta}{2} + \tfrac{45}{2048} \tan^{14} \frac{\theta}{2} + \dotsb, \\ \intertext{or} \log q %[** PP: Re-breaking] &= 2 \log \tan \frac{\theta}{2} - \log 4 \\ &\qquad + \log \Bigl(1 + \tfrac{1}{4} \tan^{4} \frac{\theta}{2} + \tfrac{17}{128} \tan^{8} \frac{\theta}{2} + \tfrac{45}{512} \tan^{12} \frac{\theta}{2} \dotsb\Bigr) \\ \Tag{(4)} &= 2 \log \tan \frac{\theta}{2} - \log 4 \\ &\qquad + M\Bigl(\tfrac{1}{4} \tan^{4} \frac{\theta}{2} + \tfrac{13}{128} \tan^{8} \frac{\theta}{2} + \tfrac{23}{384} \tan^{12} \frac{\theta}{2} + \dotsb\Bigr), \end{align*} $M$~being the modulus of the common system of logarithms. Put \[ \Tag{(5)}%[** PP: Re-breaking] \log q = 2 \log \tan \frac{\theta}{2} + 9.397940 + a \tan^{4} \frac{\theta}{2} + b \tan^{8} \frac{\theta}{2} + c \tan^{12} \frac{\theta}{2} + \dotsb, \] in which \begin{align*} \log a &= 9.0357243; \\ \log b &= 8.64452; \\ \log c &= 8.41518; \\ \log d &= 8.25283. \end{align*} \Example. Let $k' = \cos 10°\ 23'\ 46''$. To find~$q$. \[ \begin{array}[t]{r@{}c@{}l@{}} 4 \log \tan \dfrac{\theta}{2} &{}={}& 5.835 \\ \log a &{}={}& 9.036 \\ \cline{3-3} && 4.871 \\ && \\ a \tan^{4} \dfrac{\theta}{2} &{}={}& \rlap{$0.0000074$} \end{array} \qquad\qquad \begin{array}[t]{r@{}c@{}l@{}} 2 \log \tan \dfrac{\theta}{2} &{}={}& 7.9176842 \\ & & 9.3979400 \\ & & \PadTo[r]{9.3979400}{74} \\ \cline{3-3} \log q &{}={}& 7.3156316 \end{array} \] %% -----File: 102.png---Folio 96------- When $\theta$ approaches~$90°$, $\tan \dfrac{\theta}{2}$~differs little from unity, and the series in \Eqref{eq.}{}{(5)} is not very converging, but $q$~can be calculated by means of \Eqref{eq.}{VII}{(6)}, Chap.~VII, viz., \[ q = e^{-\frac{\pi K'}{K}}, \qquad q' = e^{-\frac{\pi K}{K'}}. \] By comparing these equations with \Eqref{eqs.}{IV}{(6)} and~\Eqref{}{IV}{(9)}, Chap.~IV, we see that if \begin{align*} q &= f(k) = f(\theta), \intertext{then} q' &= f(k') = f(90° - \theta). \end{align*} Therefore, having $\theta$, we can from its complement, $90° - \theta$, find~$q'$ by \Eqref{eq.}{}{(5)}, and thence~$q$ by the following process. We have \[ \frac{1}{q} = e^{\frac{\pi K'}{K}}, \qquad \frac{1}{q'} = e^{\frac{\pi K}{K'}}; \] whence \begin{align*} \log \frac{1}{q} \log \frac{1}{q'} = M^{2}\pi^{2} &= 1.8615228, \\ \Tag{(6)} \log \log \frac{1}{q} + \log \log \frac{1}{q'} &= 0.2698684, \end{align*} by which we can deduce $q$ from~$q'$. \Example. Let $\theta = 79°\ 36'\ 14''$. To find~$q$. \[ 90° - \theta = 10°\ 23'\ 46''. \] By \Eqref{eq.}{}{(5)} we get \begin{gather*} \log q' = 7.3156316, \qquad \log \frac{1}{q'} = 2.6843684, \\ \text{and} \quad \log \log \frac{1}{q'} = .4288421; \end{gather*} %% -----File: 103.png---Folio 97------- and by \Eqref{eq.}{}{(6)}, \begin{align*} \log \log \frac{1}{q} &= 9.8410263; \intertext{whence} \log q &= 1.3065321. \end{align*} When $k' = k = \cos 45° = \frac{1}{2} \sqrt{2}$, \Eqref{eq.}{}{(6)} becomes \begin{DPalign*} \Tag{(7)} \log \frac{1}{q} &= M \pi = 1.3643763; \rintertext{($k = k'$;)} \\ \intertext{whence} \log q &= 2.6356237, \\ q &= 0.0432138. \rintertext{($k = k'$.)} \end{DPalign*} \Example. Given $\theta = 10°\ 23'\ 46''$. Find~$q$. \\ \null\hfill\textit{Ans.} $\log q = 7.3156316$. \Example. Given $\theta = 82°\ 45'$. Find~$q$. \\ \null\hfill\textit{Ans.} $\log q = 9.37919$. %% -----File: 104.png---Folio 98------- \Chapter[Numerical Calculations. K.]{XIII}{Numerical Calculations. $K$.} \Section{CALCULATION OF THE VALUE OF $K$.} \First{We} have already found from \Eqref{eq.}{IX}{(37)}, Chap.~IX, \[ \Tag{(1)} \Theta (0) = \sqrt{\frac{2k'K}{\pi}}, \] and from \Eqref{eq.}{IX}{(40)}, same chapter, \[ \Tag{(2)} \Theta (K) = \frac{\Theta (0)}{\sqrt{k'}} = \sqrt{\frac{2K}{\pi}}. \] But, \Eqref{eqs.}{IX}{(38)} and~\Eqref{}{IX}{(27)}, Chap.~IX, \begin{align*} \Theta (K) &= 1 + 2q + 2q^{4} + 2q^{9} + 2q^{16} + \dotsb, \\ \Theta (0) &= 1 - 2q + 2q^{4} - 2q^{9} + 2q^{16} - \dotsb; \end{align*} whence, \Eqref{eq.}{}{(2)}, \[ \Tag{(3)} K = \frac{\pi}{2} (1 + 2q + 2q^{4} + 2q^{9} + \dotsb)^{2}. \] By adding \Eqref{eqs.}{}{(1)}~and~\Eqref{}{}{(2)} we get \[ \Theta (0) + \Theta (K) = \sqrt{\frac{2K}{\pi}} (1 + \sqrt{k'}); \] whence \begin{align*} K &= \frac{\pi}{2} \left(\frac{\Theta (0) + \Theta (K)}{1 + \sqrt{k'}}\right)^{2} \\ &= \frac{\pi}{2} \left[\frac{2(1 + 2q^{4} + 2q^{16} + \dotsb)}{1 + \sqrt{k'}}\right]^{2} \\ %% -----File: 105.png---Folio 99------- \Tag{(4)} &= \frac{\pi}{2} \left(\frac{2}{1 + \sqrt{k'}}\right)^{2} (1 + 2q^{4} + 2q^{16} + \dotsb)^{2}. \end{align*} \Example. Let $k = \sin \theta = \sin 19°\ 30'$. Required~$K$. \emph{First Method.}\quad By \Eqref{eq.}{}{(3)}. By \Eqref{eq.}{XII}{(5)}, Chap.~XII, we find $\log q = 8.6356236$. Applying \Eqref{eq.}{}{(3)}, using only two terms of the series, we have \[ \begin{array}{r@{}l@{}} 1 + 2q &{} = 1.0147662 \\ \PadTo[r]{1+2q}{\log (1 + 2q)} &{} = 0.0063660 \\ \PadTo[r]{1+2q}{2 \log (1 + 2q)} &{} = 0.0127320 \\ \log \dfrac{\pi}{2} &{} = 0.1961199 \\ \cline{1-2} \log K &{} = 0.2088519 \\ K &{} = 1.615101 \end{array} \] \emph{Second Method.}\quad By \Eqref{eq.}{}{(4)}. \Eqref{Equation}{}{(4)} may be written, neglecting~$q^{4}$, \[ K = \frac{\pi}{2} \left(\frac{1 + \sqrt{\cos \theta}}{2}\right)^{-2}; \] whence \begin{align*} \log \cos \theta & = 9.9743466, \\ \log \sqrt{\cos \theta} & = 9.9871733, \\ 1 + \sqrt{\cos \theta} & = 1.9708973, \\ \frac{1 + \sqrt{\cos \theta}}{2} & = 0.98544865; \intertext{and} \log K & = 0.2088519, \\ K & = 1.615101, \end{align*} the same result as above. %% -----File: 106.png---Folio 100------- \emph{Third Method.}\quad By \Eqref{eq.}{V}{(7)}, Chap.~V. \[ \begin{array}{r@{}c@{}l<{\quad}|>{\quad}r@{}c@{}l} \theta &{}={} & 19°\ 30' & \theta_{0} &{}={}& 1°\ 41'\ 31''.1 \\ \frac{1}{2} \theta &{}={}& 9°\ 45' & \frac{1}{2} \theta_{0} &{}={}& 0°\ 50'\ 45''.5 \\ \log \tan \frac{1}{2} \theta &{}={}& 9.235103 & & & \\ \log \cos \frac{1}{2} \theta &{}={}& 9.993681 & \log \cos \frac{1}{2} \theta_{0} &{}={}& 9.999953 \\ \begin{array}{r} \log \tan^{2} \frac{1}{2} \theta \\ \log \sin \theta_{0}\end{array}\biggr\} & = & 8.470206 & & & \\ \theta_{0} & = & 1°\ 41'\ 31''.1 & & & \end{array} \] \[ \begin{array}{r@{}c@{}l@{}} \log \cos^{2} \tfrac{1}{2} \theta &{}={}& 9.987362 \\ \log \cos^{2} \tfrac{1}{2} \theta_{0} &{}={}& 9.999906 \\ \cline{3-3} & & 9.987268 \\ \log \dfrac{\pi}{2} &{}={}& 0.196120 \\ \cline{3-3} \log K &{}={}& 0.208852 \end{array} \] $\theta_{00}$~is not calculated, as it is evident that its cosine will be~$1$. \Example. Given $k = \sin 75°$. Find~$K$. By \Eqref{eq.}{V}{(7)}, Chap.~V. From \Eqref[14sub1]{eqs.}{IV}{(14_{1})}, Chap.~IV, we find \settowidth{\TmpLen}{$\tan^{2} \tfrac{1}{2} \theta_{00}$}% \begin{align*} k &= \sin\theta = \sin 75° & \log &= 9.9849438 \\ \PadTo[l]{k_{00}}{k_{0}} &= \biggl\{ \begin{aligned} \makebox[\TmpLen][l]{$\tan^{2} \tfrac{1}{2} \theta$} &= \tan^{2} 37°\ 30' \\ \makebox[\TmpLen][l]{$\sin \theta_{0}$} &= \sinP 36°\ \Z4'\ 16''.47\Z \end{aligned}\biggr\} & & \PadTo{{}={}}{} 9.7699610 \\ % k_{00} &= \biggl\{ \begin{aligned} \makebox[\TmpLen][l]{$\tan^{2} \tfrac{1}{2} \theta_{0}$} &= \tan^{2} 18°\ \Z2'\ \Z8''.235 \\ \makebox[\TmpLen][l]{$\sin \theta_{00}$} &= \sinP \Z6°\ \Z5'\ \Z9''.38 \end{aligned}\biggr\} & & \PadTo{{}={}}{} 9.0253880 \\ % k_{03} &= \biggl\{ \begin{aligned} \makebox[\TmpLen][l]{$\tan^{2} \tfrac{1}{2} \theta_{00}$} &= \tan^{2} \Z3°\ \Z2'\ 34''.69\Z \\ \makebox[\TmpLen][l]{$\sin \theta_{03}$} &= \PadTo[l]{\tan^2 18°}{\sin}\ \Z9'\ 42''.90 \end{aligned}\biggr\} & & \PadTo{{}={}}{} 7.4511672 \end{align*} %% -----File: 107.png---Folio 101------- \[ \begin{array}{l@{\,}c@{\,}l@{\,}r@{\ }lcc<{\quad}@{}c@{}} &&&&& \log & 2 \log & \ac 2 \log \\ \cos \frac{1}{2} \theta &=& \cos & 37° & 30' & 9.8994667 & 9.7989334 & 0.2010666 \\ \cos \frac{1}{2} \theta_{0} &=& \cos & 18° & 2'.13725 & 9.9781184 & 9.9562368 & 0.0437632 \\ \cos \frac{1}{2} \theta_{02} &=& \cos & 3° & 2'.57817 & 9.9993873 & 9.9987746 & 0.0012254 \\ \cos \frac{1}{2} \theta_{03} &=& \cos & & 4'.8575 & 9.9999995 & 9.9999990 & 0.0000010 \\ \cline{8-8} & & & & & & & 0.2460562 \\ \multicolumn{1}{c}{\dfrac{\pi}{2}} & & & & & & \dfrac{\pi}{2} & \Z.1961199 \\ \cline{8-8} & & & & & \multicolumn{3}{r@{}}{% \log K = \PadTo[r]{2.768064\quad \text{\textit{Ans.}}}{0.4421761}} \\ & & & & & \multicolumn{3}{r@{}}{% K = 2.768064\quad \text{\textit{Ans.}}} \end{array} \] \Example. Given $k = \sin 45°$. Find~$K$. Method of \Eqref{eq.}{V}{(7)}, Chap.~V. From \Eqref[14sub1]{eqs.}{IV}{(14_{1})}, Chap.~IV, we have \settowidth{\TmpLen}{$\tan^{2} \tfrac{1}{2} \theta_{00}$}% \begin{align*} & & \PadTo{9.2344486}{\log} \\ \PadTo[l]{k_{00}}{k_{0}} &= \biggl\{ \begin{aligned} \makebox[\TmpLen][l]{$\tan^{2} \frac{1}{2} \theta$} &= \tan^{2} 22°\ 30' \\ \makebox[\TmpLen][l]{$\sin \theta_{0}$} &= \sinP \Z9°\ 52'.75683 \end{aligned}\biggr\} & 9.2344486 \\ % k_{00} &= \biggl\{ \begin{aligned} \makebox[\TmpLen][l]{$\tan^{2} \tfrac{1}{2} \theta_{0}$} &= \tan^{2} \Z4°\ 56'.37841 \\ \makebox[\TmpLen][l]{$\sin \theta_{00}$} &= \PadTo[l]{\tan^2 22°}{\sin}\ 25'.679 \end{aligned}\biggr\} & 7.8733009 \\ % k_{03} &= \biggl\{ \begin{aligned} \tan^{2} \tfrac{1}{2} \theta_{00} &= \PadTo[l]{\tan^2 22°}{\tan^{2}}\ 12'.3395\Z \\ \makebox[\TmpLen][l]{$\sin \theta_{03}$} &= \PadTo[l]{\tan^2 22°}{\sin}\ \Z0'.05 \end{aligned}\biggr\} & 5.1445523 \end{align*} \[ \begin{array}{l@{}r@{}l@{}} \ac \log \cos^{2} \frac{1}{2} \theta && 0.0687694 \\ \ac \log \cos^{2} \frac{1}{2} \theta_{0} && 0.0032320 \\ \ac \log \cos^{2} \frac{1}{2} \theta_{00} && 0.0000060 \\ \multicolumn{1}{c}{\log \dfrac{\pi}{2}} && 0.1961199 \\ \cline{3-3} & \log K = {}& 0.2681273 \\ & K = {}& 1.8540747 \rlap{\quad\text{\textit{Ans.}}} \end{array} \] \Example. Given $\theta = 63°\ 30'$. Find~$K$. \\ \null\hfill\textit{Ans.} $\log K = 0.3539686$. \Example. Given $\theta = 34°\ 30'$. Find~$K$. \\ \null\hfill\textit{Ans.} $K = 1.72627$. %% -----File: 108.png---Folio 102------- \Chapter[Numerical Calculations. u.]{XIV}{Numerical Calculations. $u$} \Section{CALCULATION OF THE VALUE OF~$u$.} \First{When} $\theta° = \sin^{-1}k < 45°$. \Example. Let $\phi = 30°$, $k = \sin 45°$. Find~$u$. \emph{First Method.} \Eqref{Eq.}{IV}{(23)}, Chap.~IV, and \Eqref[14sub1]{eqs.}{IV}{(14_{1})}, \Eqref[14sub2]{}{IV}{(14_{2})},~\Eqref[14sub3]{}{IV}{(14_{3})}, Chap.~IV\@. By \Eqref[14sub1]{equations}{IV}{(14_{1})}, \begin{align*} \frac{\theta}{2} &= 22°~30'; \\ \log \tan \frac{\theta}{2} &= 9.6172243; \\ \log \tan^{2} \frac{\theta}{2} &= 9.2344486 = \log k_{0} = \log \sin \theta_{0}; \\ \theta_{0} &= 9°~52'~45''.41; \\ \log \tan \frac{\theta_{0}}{2} &= 8.9366506; \\ \log \tan^{2} \frac{\theta_{0}}{2} &= 7.8733012 = \log k_{00} = \log \sin \theta_{00}; \\ \theta_{00} &= 0°~25'~40''.7; \\ \log \tan^{2} \frac{\theta_{00}}{2} &= 5.144552 = \log k_{03}. \end{align*} %% -----File: 109.png---Folio 103------- By \Eqref[14sub2]{equations}{IV}{(14_{2})}, \[ \begin{array}{@{}r@{}l@{}} \phi &{}= 30° \\ \log \tan \phi &{}= 9.761439 \\ \log \cos \theta &{}= 9.849485 \\ \cline{1-2} \llap{$\log \tan (\phi_{1} - \phi)$} &{}= 9.610924 \\ \phi_{1} - \phi &{}= \rlap{$22°\ 12'\ 27''.56$} \\ \phi_{1} &{}= \rlap{$52°\ 12'\ 27''.56$} \\ \end{array} \] % \[ \begin{array}{@{}r@{}l@{}} \log \tan \phi_{1} &{}= 0.110438 \\ \log \cos \theta_{0} &{}= 9.993512 \\ \cline{1-2} \llap{$\log \tan (\phi_{2} - \phi_{1})$} &{}= 0.103949 \\ \phi_{2} - \phi_{1} &{}= \rlap{$51°\ 47'\ 32''.59$} \\ \end{array} \] % \[ \begin{array}{@{}r@{}l@{}} \phi_{2} &{}= \rlap{$104°\ 0'\ 0''.15$} \\ \log \tan \phi_{2} &{}= 0.603228 \\ \log \cos \theta_{00} &{}= 9.999988 \\ \cline{1-2} % \llap{$\log \tan (\phi_{3} - \phi_{2})$} &{}= 0.603216 \\ \phi_{3} - \phi_{2} &{}= \rlap{$104°\ 0'\ 1''.5$} \\ & \\ % \phi_{3} &{}= \rlap{$208°\ 0'\ 1''.65$} \end{array} \] Since $\dfrac{\phi_{2}}{4} = 26°\ 0'\ 0''.04$ and $\dfrac{\phi_{3}}{8} = 26°\ 0'\ 0''.21$, we need not calculate~$\phi_{4}$. \[ \frac{\phi_{3}}{8} = 93600''.21. \] Reducing this to radians, we have \[ \log \frac{\phi_{3}}{8} = 9.656852. \] %% -----File: 110.png---Folio 104------- Substituting in \Eqref{eq.}{IV}{(23)}, Chap.~IV, we have, since $\cos \theta_{03} = 1$, \[ \begin{array}{@{}r@{}c@{}l@{}} \llap{$\ac$} \log \cos \theta &{}={}& 0.150515 \\ \log \cos \theta_{0} &{}={}& 9.993512 \\ \log \cos \theta_{00} &{}={}& 9.999988 \\ \cline{1-3} % && 0.144014 \\ && 0.072007 \rlap{${} = \log\sqrt{\dfrac{\cos \theta_{0} \cos \theta_{00}}{\cos \theta}}$} \\ \log \dfrac{\phi_{3}}{8} &{}={}& 9.656852 \\ \cline{3-3} % \log u &{}={}& 9.728859 \\ u &{}={}& 0.535623\rlap{,\quad\text{\textit{Ans.}}} \end{array} \] When $\theta = \sin^{-1} k > 45°$. %[** PP: Scan unclear] \Example. Given $k = \sin 75°$, $\tan \phi = \sqrt{\dfrac{2}{\sqrt{3}}}$. To find~$F(k, \phi)$. \emph{First Method. Bisected Amplitudes.} By \Eqref{equations}{IV}{(24)} and~\Eqref{}{IV}{(25)}, Chap.~IV, we get \begin{align*} \PadTo[l]{\phi_{\frac{1}{32}}}{\phi} &= 47°\ \Z3'\ 30''.91, & & \\ % \PadTo[l]{\phi_{\frac{1}{32}}}{\phi_{\frac{1}{2}}} &= 25°\ 36'\ \Z5''.64, & \PadTo[l]{\beta_{04}}{\beta} &= 45°; \\ % \PadTo[l]{\phi_{\frac{1}{32}}}{\phi_{\frac{1}{4}}} &= 13°\ \Z6'\ 30''.98, & \PadTo[l]{\beta_{04}}{\beta_{0}} &= 24°\ 40'\ 10''.94; \\ % \PadTo[l]{\phi_{\frac{1}{32}}}{\phi_{\frac{1}{8}}} &= \Z6°\ 35'\ 40''.74, & \beta_{00} &= 12°\ 39'\ 15''.83; \\ % \PadTo[l]{\phi_{\frac{1}{32}}}{\phi_{\frac{1}{16}}} &= \Z3°\ 18'\ \Z8''.75, & \beta_{03} &= \Z6°\ 22'\ \Z8''.40; \\ % \phi_{\frac{1}{32}} &= \Z1°\ 39'\ \Z7''.43, & \beta_{04} &= {} \end{align*} Substituting in \Eqref{equation}{IV}{(26)}, Chap.~IV, we have \begin{align*} F(k, \phi) &= 32 × 1°\ 39'\ 7''.43 \\ &= 52°\ 51'\ 58''.03 \\ &= 0.9226878.\quad \text{\textit{Ans.}} \end{align*} %% -----File: 111.png---Folio 105------- \emph{Second Method.} \Eqref{Equation}{IV}{(29)}, Chap.~IV. From \Eqref[18sub3]{equations}{IV}{(18_{3})}, Chap.~IV, we have \[ \begin{array}{r@{}l@{}l@{\;}c} &&& \log \\ k &{}= \cos \eta &\begin{aligned}{}= \cosP 15°\ \Z0'\ \Z0''.00\end{aligned} & 9.9849438 \\ k' &{}= \sin \eta &\begin{aligned}{}= \sinP 15°\ \Z0'\ \Z0''.00\end{aligned} & 9.4129962 \\ k_{0}' &{}= \biggl\{\begin{aligned} &\tan^{2} \tfrac{1}{2} \eta \\ &\sin \eta_{0} \end{aligned} & \begin{aligned} {}= \tan^{2} \Z7°\ 30'\ \Z0''.00 \\ {}= \sinP \Z0°\ 59'\ 35''.25 \end{aligned}\;\biggr\} & 8.2388582 \\ k_{1} &{}= \cos \eta_{0} &\begin{aligned}{}= \cosP \Z0°\ 59'\ 35''.25\end{aligned} & 9.9999348 \\ k'_{00} &{}= \biggl\{\begin{aligned} &\tan^{2} \tfrac{1}{2} \eta_{0} \\ &\sin \eta_{00} \end{aligned}& \begin{aligned} {}= \tan^{2} \Z0°\ 29'\ 47''.62 \\ {}= \sinP \Z0°\ \Z0'\ 15''.49 \end{aligned}\;\biggr\} & 5.8757219 \\ k_{2} &{}= \cos \eta_{00} &\begin{aligned}{}= \cosP \Z0°\ \Z0'\ 15''.49\end{aligned} & 0.0000000 \\ k'_{03} &{}= \left(\tfrac{1}{2} k'_{00}\right)^{2} && 1.1493838 \end{array} \] From \Eqref[18sub2]{equations}{IV}{(18_{2})}, Chap.~IV, we get \begin{align*} \phi &= 47°\ 3'\ 30''.95; \\ 2 \phi_{0} - \phi &= 45°; \\ \phi_{0} &= 46°\ 1'\ 45''.475; \\ \phi_{02} &= 46°\ 1'\ 29''.41; \\ \phi_{03} &= 46°\ 1'\ 29''.41; \\ 45° + \tfrac{1}{2} \phi_{3} &= 68°\ 0'\ 44''.705. \end{align*} Substituting these values in \Eqref{eq.}{IV}{(29)}, Chap.~IV, we get \begin{align*} F(k, \phi) &= \sqrt{\frac{k_{1}}{k}} · \frac{1}{M} · \log \tan 68°\ 0'\ 44''.705 \\ &= 0.9226877.\quad\text{\textit{Ans.}} \end{align*} \emph{Third Method.} \Eqref{Equation}{IV}{\DPtypo{(23)^*}{(23)}}, Chap.~IV\@. %% -----File: 112.png---Folio 106------- From \Eqref[14sub1]{equations}{IV}{(14_{1})}, Chap.~IV, we have \[ \begin{array}{r@{}l@{}l@{\;}c} &&& \log \\ % [** Moving to prev. line, cf. prev. page] k &{}= \sin \theta &\begin{aligned}{}= \sinP 75°\ \Z0'\ \Z0''\phantom{.00}\end{aligned} & 9.9849438 \\ k' &{}= \cos \theta &\begin{aligned}{}= \cosP 75°\phantom{\ 00'\ 00''.00}\end{aligned} & 9.4129962 \\ k_{0} &{}= \biggl\{\begin{aligned} &\tan^{2} \tfrac{1}{2} \theta \\ &\sin \theta_{0} \end{aligned} & \begin{aligned} &{}= \tan^{2} 37°\ 30' \\ &{}= \sinP 36°\ \Z4'\ 16''.47 \end{aligned}\;\biggr\} & 9.7699610 \\ k_{1}' &{}= \cos \theta_{0} && 9.9075648 \\ k_{02} &{}= \biggl\{\begin{aligned} &\tan^{2} \tfrac{1}{2} \theta_{0} \\ &\sin \theta_{00} \end{aligned} & \begin{aligned} &{}= \tan^{2} 18°\ \Z2'\ 8''.235 \\ &{}= \sinP \Z6°\ \Z5'\ 9''.38 \end{aligned}\;\biggr\} & 9.0253880 \\ k_{2}' &{}= \cos \theta_{00} && 9.9975452 \\ k_{03} &{}= \biggl\{\begin{aligned} &\tan^{2} \tfrac{1}{2} \theta_{00} \\ &\sin \theta_{03} \end{aligned} & \begin{aligned} &{}= \tan^{2} \Z3°\ \Z2'\ 34''.69 \\ &{}= \sinP \phantom{00°}\ \Z9'\ 42''.90 \end{aligned}\;\biggr\} & 7.4511672 \\ k'_{3} &{}= \cos \theta_{03} && 9.9999982 \\ k_{04} &{}= \left(\tfrac{1}{2} k_{03}\right)^{2} && 4.3002761 \\ k_{4}' &{}={} && 0.0000000 \end{array} \] From \Eqref[14sub2]{equations}{IV}{(14_{2})}, Chap.~IV, we have \begin{align*} \phi &= \Z47°\ \Z3'\ 30''.94; \\ \phi_{1} &= \Z62°\ 36'\ \Z3''.10; \\ \phi_{2} &= 119°\ 55'\ 47''.67; \\ \phi_{3} &= 240°\ \Z0'\ \Z0''.19; \\ \phi_{4} &= 480°\ \Z0'\ \Z0''. \end{align*} Therefore the limit of $\phi$, $\dfrac{\phi_{1}}{2}$, $\dfrac{\phi_{2}}{4}$, or~$\dfrac{\phi_{n}}{2^{n}}$ is $30° = \dfrac{\pi}{6}$. Substituting these values in \Eqref{eq.}{IV}{\DPtypo{(23)^*}{(23)}}, Chap.~IV, we have \begin{align*} F(k, \phi) &= \sqrt{\frac{k_{1}' k_{2}' k_{3}' k_{4}'}{k'}} · \frac{\pi}{6} \\ &= 0.9226874.\quad\text{\textit{Ans.}} \end{align*} \Example. Given $\phi = 30°$, $k = \sin 89°$. Find~$u$. Method of \Eqref{eq.}{IV}{(28)}, Chap.~IV\@. %% -----File: 113.png---Folio 107------- From \Eqref[18sub1]{eqs.}{IV}{(18_{1})} we find \[ k_{1} = \sin \theta_{1}\quad \text{and}\quad \tan^{2} \tfrac{1}{2} \theta_{1} = k = \sin \theta, \] from which we find that $k_{1} = 1$ as far as seven decimal places. From \Eqref[18sub2]{eqs.}{IV}{(18_{2})} we have \[ \begin{array}{r@{}c@{}l@{}} \sin \phi &{}={}& 9.6989700 \\ k &{}={}& 9.9999338 \\ \cline{3-3} % \sin (2 \phi_{0} - \phi) &{}={}& 9.6989038 \\ 2 \phi_{0} - \phi &{}={}& \rlap{$29°\ 59'.69733$} \\ 2 \phi_{0} &{}={}& \rlap{$59°\ 59'.69733$} \\ 45° + \tfrac{1}{2} \phi_{0}\footnotemark &{}={}& \rlap{$59°\ 59'.92433$} \\ \log \left(45° + \tfrac{1}{2} \phi_{0}\right) &{}={}& 0.2385385 \end{array} \] \footnotetext{Since $k_{1} = 1$, $\phi_{00} = \phi_{0}$, and we need not carry the calculation further.}% From \Eqref[18sub3]{eqs.}{IV}{(18_{3})}, Chap.~IV, we have \[ k = \cos \eta = \cos 1°,\qquad \tfrac{1}{2} \eta = 30'. \] Substituting in \Eqref{eq.}{IV}{(28)}, Chap.~IV, we have \[ \begin{array}{r@{}c@{}l@{}} \ac \log \cos \tfrac{1}{2} \eta && 0.0000330 \\ \log \log \left(45° + \tfrac{1}{2} \phi_{0}\right) && 9.3775585 \\ \ac \log M && 0.3622157 \\ \cline{3-3} % \log F(k, \phi) &{}={}& 9.7398072 \\ F(k, \phi) &{}={}& 0.549297\PadTo[l]{0}{.}\rlap{\quad\text{\textit{Ans.}}} \end{array} \] \Example. Given $\phi = 79°$, $k = 0.25882$. Find~$u$. \\ \null\hfill\textit{Ans.} $u = 0.39947$. \Example. Given $\phi = 37°$, $k = 0.86603$. Find~$u$. \\ \null\hfill\textit{Ans.} $u = 0.68141$. %% -----File: 114.png---Folio 108------- \Chapter[Numerical Calculations. phi.]{XV}{Numerical Calculations. $\phi$.} \Example. Given $u = 1.368407$, $\theta = 38°$. Find~$\phi$. \emph{First Method.} From \Eqref{eqs.}{IX}{(46)} \Eqref[41st]{and}{IX}{(41)^*}, Chap.~IX, we have \begin{align*} u &= x \Theta^{2}(K), \\ \Delta \phi &= \sqrt{k'} \frac{\Theta_{1}(x)}{\Theta (x)}. \end{align*} From \Eqref{equations}{XII}{(5)}, Chap.~XII, and~\Eqref{}{IX}{(38)}, Chap.~IX, we have \[ \begin{array}{r@{}c@{}l@{}} \log q &{}={}& 8.4734187 \\ \log \Theta^{2}(K) &{}={}& 0.0501955 \\ \log u &{}={}& 0.1362153 \\ \cline{3-3} % \log x &{}={}& 0.0860198 \\ x &{}={}& \rlap{$69°\ 50'\ 46''.12$} \end{array} \] From \Eqref{equations}{IX}{(23)} and~\Eqref{}{IX}{(24)}, Chap.~IX, we get \[ \begin{array}{r@{}c@{}l@{}} \log \Theta_{1}(x) &{}={}& 9.9798368 \\ \log \Theta (x) &{}={}& 0.0192687 \\ \cline{3-3} % && 9.9605681 \\ \log \sqrt{k'} &{}={}& 9.9482661 \\ \cline{3-3} % \log \Delta \phi &{}={}& 9.9088342 \rlap{${} = \log \sin \lambda$} \end{array} \] But \begin{align*} k^{2} \sin^{2} \phi &= 1 - \Delta^{2} \phi, \\ k \sin \phi &= \cos \lambda; \end{align*} %% -----File: 115.png---Folio 109------- whence \[ \begin{array}{r@{}c@{}l@{}} \log \cos \lambda &{}={}& 9.7675483 \\ \log k &{}={}& 9.7893420 \\ \cline{3-3} % \log \sin \phi &{}={}& 9.9782063 \\ \phi &{}={}& \rlap{$72°$.\quad\text{\textit{Ans.}}} \end{array} \] \emph{Second Method.} From \Eqref{eq.}{VI}{(1)}, Chap.~VI\@. From \Eqref[14sub1]{eqs.}{IV}{(14_{1})} Chap.~IV, we find \[ \begin{array}{r@{}l@{}l@{\;}c} &&& \log \\ %[** log on its own line, as on 113] \PadTo[l]{k_{00}}{k_{0}} &{}= \biggl\{\begin{aligned} &\tan^{2} \tfrac{1}{2} \theta\\ &\sin \theta_{0} \end{aligned} & \begin{aligned} {}= \tan^{2} 19°\phantom{\ 48'.54569} \\ {}= \sinP \Z6°\ 48'.54569 \end{aligned}\;\biggr\} & 9.0739438 \\ & \phantom{{}={}}\quad \begin{aligned}\cos \theta_{0}\end{aligned} && 9.9969260 \\ % k_{00} &{}= \biggl\{\begin{aligned} &\tan^{2} \tfrac{1}{2} \theta_{0} \\ &\sin \theta_{00} \end{aligned} & \begin{aligned} {}= \tan^{2} \Z3°\ 24'.2784\Z \\ {}= \DPtypo{\phantom{\sinP}}{\sinP} \phantom{00°}\ 12'.16659 \end{aligned}\;\biggr\} & 7.5488952 \\ &\phantom{{}={}}\quad \begin{aligned}\cos \theta_{00}\end{aligned} &&9.9999974 \\ % k_{03} &{}= \biggl\{\begin{aligned} &\tan^{2} \tfrac{1}{2} \theta_{00} \\ &\sin \theta_{03} \end{aligned} & \begin{aligned} {}= \tan^{2} \phantom{00°}\ \Z6'.08329 \\ {} \end{aligned}\;\biggr\} & 4.4957316 \\ &\phantom{{}={}}\quad \begin{aligned}\cos \theta_{03}\end{aligned} &&0.0000000 \end{array} \] Substituting these values in \Eqref{eq.}{VI}{(1)}, Chap.~VI, we have \[ \begin{array}{r<{\quad}@{}l@{}} \log \cos \theta_{0} & 9.9969260 \\ \log \cos \theta_{00} & 9.9999974 \\ \cline{2-2} % & 9.9969234 \\ \log \sqrt{\cos \theta_{0} \cos \theta_{00}} & 9.9984617 \\ \ac \log \PadTo{\cos \theta_{0}}{\text{``}} \PadTo{\cos \theta_{00}}{\text{``}} & 0.0015383 \\ \log u & \Z.1362153 \\ \log \sqrt{\cos \theta} & 9.9482660 \\ \log 2^{3} & \Z.9030900\rlap{\footnotemark} \\ \ac \log \sqrt{\cos \theta_{0} \cos \theta_{00}} & 0.0015383 \\ \cline{2-2} % & 0.9891096 \\ & 2.2418773 \\ \cline{2-2} % \log \phi_{3}\addtocounter{footnote}{-1}\footnotemark & 2.7472323 \\ \phi_{3} & \rlap{$558°\ 46'.140$} \end{array} \] \footnotetext{$n$~is taken equal to~$3$, because $\cos\DPtypo{}{\theta}_{03} = 1$.} %% -----File: 116.png---Folio 110------- Whence, by \Eqref{equations}{VI}{\DPtypo{(1)^*}{(1)}} of Chap.~VI, we get \[ \begin{array}{r@{}c@{}l@{}}%[** PP: Re-aligning first group] k_{03} \log &{}={}& 4.4957316 \\ \sin \phi_{3} && 9.5075232_{n} \\ \cline{3-3} % \sin (2 \phi_{2} - \phi_{3}) && 4\DPtypo{\,}{.}0032548_{n} \\ 2 \phi_{2} - \phi_{3} &{}={}& -0'.00346 \\ \phi_{2} &{}={}& \rlap{$279°\ 23'.06827$} \end{array} \] % \[ \begin{array}{r@{}c@{}l@{}} k_{00} \log &{}={}& 7.5488952 \\ \sin \phi_{2} && 9.9941484_{n} \\ \cline{3-3} \sin (2 \phi_{1} - \phi_{2}) && 7.5430436_{n} \\ 2 \phi_{1} - \phi_{2} &{}={}& -12'.0039 \\ \phi_{1} &{}={}& \rlap{$139°\ 35'.5321$} \end{array} \] % \[ \begin{array}{r@{}c@{}l@{}} k_{0} \log &{}={}& 9.0739438 \\ \sin \phi_{1} && 9.8117249 \\ \cline{3-3} \sin (2 \phi - \phi_{1}) && 8.8856687 \\ 2 \phi - \phi_{1} &{}={}& \rlap{$\Z4°\ 24'.467$} \\ \phi &{}={}& \rlap{$71°\ 59'.9999$} \\ &{}={}& \rlap{$72°$.\quad\text{\textit{Ans.}}} \end{array} \] \Example. Given $u = 2.41569$, $\theta = 80°$. Find~$\phi$. \\ \null\hfill\textit{Ans.} $\phi = 82°$. \Example. Given $u = 1.62530$, $k = \frac{1}{2}$. Find~$\phi$. \\ \null\hfill\textit{Ans.} $\phi = 87°$. %% -----File: 117.png---Folio 111------- \Chapter[Numerical Calculations. E(k, phi).]{XVI} {Numerical Calculations. $E(k, \phi)$.} \emph{First Method.} By Chap.~X, \Eqref{eqs.}{X}{(15)},~\Eqref{}{X}{(16)}, and~\Eqref{}{X}{(17)}. \Example. Given $k = 0.9327$, $\phi = 80°$. Find $E(k, \phi)$. By \Eqref{eq.}{X}{(15)}, Chap.~X, \[ \begin{array}{l@{}c@{}l<{\qquad\qquad}l@{}c@{}l} \phi &{}={}& 80°; & \gamma &{}={}& 67°\ 44'.\Z; \\ \phi_{\frac{1}{2}} &{}={}& 50° 43'.6, & \gamma_{\frac{1}{2}} &{}={}& 46°\ 40'.4; \\ \phi_{\frac{1}{4}} &{}={}& 27° 48'.5, & \gamma_{\frac{1}{4}} &{}={}& 26°\ \Z0'.1; \\ \phi_{\frac{1}{8}} &{}={}& 14° 16'.7, & \gamma_{\frac{1}{8}} &{}={}& 13°\ 24'.0; \\ \phi_{\frac{1}{16}} &{}={}& \Z7° 11'.3, & \gamma_{\frac{1}{16}} &{}={}& \Z6°\ 45'.2; \\ \phi_{\frac{1}{32}} &{}={}& \Z3° 36'.0, & \llap{$\log \sin{}$} \gamma_{\frac{1}{32}} &{}={}& 8.77094; \\ \phi_{\frac{1}{32}} &{}={}& 0.062831. && \\ \llap{$\therefore$ } \phi^{5}_{\frac{1}{32}} &{}<{}& 0.0000001. && \end{array} \] Whence, by \Eqref{eq.}{X}{(17)}, \[ \begin{array}{r@{}c@{}l@{}} E(k, \phi_{\frac{1}{32}}) &{}={}& 0.06279\rlap{$4$} \\ \PadTo[l]{\sin \phi_{\frac{1}{16}}}{\sin \phi} \PadTo[l]{\sin^{2} \gamma_{\frac{1}{32}}}{\sin^{2} \gamma_{\frac{1}{2}}} &{}={}& 0.52116 \\ 2\, \PadTo[l]{\sin \phi_{\frac{1}{16}}}{\sin \phi_{\frac{1}{2}}} \PadTo[l]{\sin^{2} \gamma_{\frac{1}{32}}}{\sin^{2} \gamma_{\frac{1}{4}}} &{}={}& 0.29757 \\ 4\, \PadTo[l]{\sin \phi_{\frac{1}{16}}}{\sin \phi_{\frac{1}{4}}} \PadTo[l]{\sin^{2} \gamma_{\frac{1}{32}}}{\sin^{2} \gamma_{\frac{1}{8}}} &{}={}& 0.10023 \\ 8\, \PadTo[l]{\sin \phi_{\frac{1}{16}}}{\sin \phi_{\frac{1}{8}}} \sin^{2} \gamma_{\frac{1}{16}} &{}={}& 0.02728 \\ 16 \sin \phi_{\frac{1}{16}} \sin^{2} \gamma_{\frac{1}{32}} &{}={}& 0.00697 \\ \cline{3-3} && 0.95321 \end{array} \] Hence, by \Eqref{eq.}{X}{(16)}, \begin{align*} E(k, \phi) &= 32E(k, \phi_{\frac{1}{32}}) - 0.95321 \\ &= 2.0094 - 0.9532 = 1.0562. \end{align*} %% -----File: 118.png---Folio 112------- \emph{Second Method.} By Chap.~X, \Eqref{eq.}{X}{(26)}. \Example. Given $k = \sin 75°$, $\tan \phi = \sqrt{\dfrac{2}{\sqrt{3}}}$. Find~$E(k, \phi)$. From \Eqref[14sub1]{eqs.}{IV}{(14_{1})}, Chap.~IV, we have \begin{align*}%XXXX k &= \sin \theta = \sin 75°\ 0'\ 0'' & \log ={}& 9.9849438 \\ k' &= \cos \theta = \cos 75° && 9.4129962 \\ k_{0} &= \biggl\{ \begin{aligned} \tan^{2} \tfrac{1}{2} \theta &= \tan^{2} 37°\ 30' \\ \PadTo[l]{\tan^2 \tfrac{1}{2} \theta}{\sin \theta_{0}} &= \PadTo[l]{\tan^2}{\sin}\ 36°\ \Z4'\ 16''.47 \end{aligned} \biggr\} && 9.7699610 \\ k_{1}' &= \cos \theta_{0} && 9.9075648 \\ k_{02} &= \biggl\{ \begin{aligned} \tan^{2} \tfrac{1}{2} \theta_{0} &= \tan^{2} 18°\ \Z2'\ \Z8''.235 \\ \PadTo[l]{\tan^2 \tfrac{1}{2} \theta_{0}}{\sin \theta_{00}} &= \PadTo[l]{\tan^2}{\sin}\ \Z6°\ \Z5'\ \Z9''.38 \end{aligned} \biggr\} && 9.0253880 \\ k_{2}' &= \cos \theta_{00} && 9.9975452 \\ k_{03} &= \biggl\{ \begin{aligned} \tan^{2} \tfrac{1}{2} \theta_{00} &= \tan^{2} \Z3°\ \Z2'\ 34''.69 \\ \PadTo[l]{\tan^2 \tfrac{1}{2} \theta_{00}}{\sin \theta_{03}} &= \PadTo[l]{\tan^2 22°}{\sin}\ \Z9'\ 42''.90 \end{aligned} \biggr\} && 7.4511672 \\ k_{3}' &= \cos \theta_{03} && 9.9999982 \\ k_{04} &= \left(\tfrac{1}{2}k_{03}\right)^{2} && 4.3002761 \\ k_{4}' &={} && 0.0000000 \end{align*} From \Eqref[14sub2]{eqs.}{IV}{(14_{2})}, Chap.~IV, we have \begin{align*} \phi &= \Z47°\ \Z3'\ 30''.94; \\ \phi_{1} &= \Z62°\ 36'\ \Z3''.10; \\ \phi_{2} &= 119°\ 55'\ 47''.67; \\ \phi_{3} &= 240°\ \Z0'\ \Z0''.19. \end{align*} %% -----File: 119.png---Folio 113------- Applying \Eqref{eq.}{X}{(26)}, Chap.~X, we have \[ \begin{array}{rr@{}l@{}c<{\qquad}@{}c@{}} k^{2} & \log ={}& 9.9698876 && \\ \ac 2 & & 9.6989700 && \\ \cline{3-3} & & 9.6688576 && .4665064 \end{array} \] \[ \begin{array}{rr@{}l@{}c<{\qquad}@{}c@{}} k_{0} & \phantom{\log ={}} & 9.7699610 && \\ \ac 2 & & 9.6989700 && \\ \cline{3-3} & & 9.1377886 && .1373373 \end{array} \] \[ \begin{array}{rr@{}l@{}c<{\qquad}@{}c@{}} k_{00}& \phantom{\log ={}} & 9.0253880 && \\ \ac 2 & & 9.6989700 && \\ \cline{3-3} & & 7.8621466 && .0072802 \end{array} \] \[ \begin{array}{rr@{}l@{}c<{\qquad}@{}c@{}} k_{03}& \phantom{\log ={}} & 7.4511672 && \\ \ac 2 & & 9.6989700 && \\ \cline{3-3} & & 5.0132838 && .0000103 \\ \cline{5-5} & & && .6111342 \end{array} \] \[ 1 - .6111342 = 0.3888658. \] From \Eqref{eq.}{IV}{\DPtypo{(23)^*}{(23)}}, Chap.~IV, we find $F(k, \phi) = 0.9226874$. Hence \[ \begin{array}{r@{}l@{}c@{}} %[** PP: Re-aligning first equation] F(k, \phi) \left[1 - \dfrac{k^{2}}{2} \left(1 + \dfrac{k_{0}}{2} + \dotsb\right)\right] &{}=& 0.3588016 \\[4pt] \dfrac{k \sqrt{k_{0}}}{2} \sin \phi_{1} &{}=& 0.3290186 \\[4pt] \dfrac{k \sqrt{k_{0}k_{00}}}{4} \sin \phi_{2} &{}=& 0.0522872 \\[4pt] \dfrac{k \sqrt{k_{0}k_{02}k_{03}}}{8} \sin \phi_{3} &{}= -& 0.0013888 \\[4pt] \dfrac{k \sqrt{k_{0} \dotsm k_{04}}}{16} \sin \phi_{4} &{}=& 0.0000010 \\[4pt] \cline{3-3} && 0.3799180 \end{array} \] %% -----File: 120.png---Folio 114------- Whence \[ E(k, \phi) = 0.3588016 + 0.3799180 = 0.7387196.\quad\textit{Ans.} \] \Example. Given $k = \sin 75°$. Find~$E\left(k, \dfrac{\pi}{2}\right)$. From Example~2, Chap.~XIII, we find \[ \begin{array}{r@{}c@{}l@{}} \log F\left(k, \dfrac{\pi}{2}\right) &{}={}& 0.4421761 \\ \log 0.3888658 &{}={}& 1.5897998 \\ \cline{3-3} \log E \left(k, \dfrac{\pi}{2}\right) &{}={}& 0.0319759 \\ E\left(k, \frac{\pi}{2}\right) &{}={}& 1.076405\rlap{.\quad\text{\textit{Ans.}}} \end{array} \] \Example. Given $k = \sin 30°$, $\phi = 81°$. Find~$E(k, \phi)$. \\ \null\hfill\textit{Ans.} $E(k, \phi) = 1.33124$. \Example. Find~$E(\sin 80°, 55°)$. \\ \null\hfill\textit{Ans.} $0.82417$. \Example. Find~$E\left(\sin 27°, \dfrac{\pi}{2}\right)$. \\ \null\hfill\textit{Ans.} $1.48642$. \Example. Find~$E(\sin 19°, 27°)$. \\ \null\hfill\textit{Ans.} $0.46946$. %% -----File: 121.png---Folio 115------- \Chapter{XVII}{Applications.} \Section{RECTIFICATION OF THE LEMNISCATE.} \First{The} polar equation of the Lemniscate is $r = a \sqrt{\cos 2\theta}$, referred to the centre as the origin. From this we get \[ \frac{dr}{d\theta} = -\frac{a\sin 2\theta}{\sqrt{\cos 2\theta}}; \] whence the length of the arc measured from the vertex to any point whose co-ordinates are $r$~and~$\theta$ \begin{align*} s &= \int \biggl\{\left(\frac{dr}{d\theta}\right)^{2} + r^{2} \biggr\}^{\frac{1}{2}} d\theta = a \int \biggl\{\frac{\sin^{2} 2\theta}{\cos 2\theta} + \cos 2\theta \biggr\}^{\frac{1}{2}} \DPtypo{}{d\theta} \\ &= a \int \frac{d\theta}{\sqrt{\cos 2\theta}} = a \int \frac{d\theta}{\sqrt{1 - 2 \sin^{2} \theta}}. \end{align*} Let $\cos 2\theta = \cos^{2} \phi$, whence \begin{align*} %[** PP: Aligning on equal signs] s &= a \int \frac{\dfrac{d\theta}{d\phi}\, d\phi}{\cos \phi} = a \int \frac{\sin \phi\, d\phi}{\sqrt{1 - \cos^{4} \phi}} \\ &= a \int_{0}^{\phi} \frac{d\phi}{\sqrt{1 + \cos^{2} \phi}} = \frac{a}{\sqrt{2}} \int_{0}^{\phi} \frac{d\phi}{\sqrt{1 - \frac{1}{2} \sin^{2} \phi}} \\ &= \frac{a}{\sqrt{2}} F\left(\frac{1}{\sqrt{2}}, \phi\right). \end{align*} %% -----File: 122.png---Folio 116------- Since $r = a \sqrt{\cos 2\theta} = a \cos \phi$, the angle~$\phi$ can be easily constructed by describing upon the axis~$a$ of the Lemniscate a semicircle, and then revolving the radius vector until it cuts this semicircle. In the right-angled triangle of which this is one side, and the axis the hypotenuse, $\phi$~is evidently the angle between the axis and the revolved position of the radius vector. \Section{RECTIFICATION OF THE ELLIPSE.} Since the equation of the ellipse is $\dfrac{x^{2}}{a^{2}} + \dfrac{y^{2}}{b^{2}} = 1$, we can assume $x = a\sin \phi$, $y = b\cos \phi$, so that $\phi$~is the complement of the \emph{eccentric angle}. Hence \begin{align*} s &= \int \sqrt{dx^{2} + dy^{2}} = a \int d\phi \sqrt{1 - e^{2} \sin^{2} \phi} \\ &= aE(e, \phi), \end{align*} in which $e$, the eccentricity of the ellipse, is the modulus of the Elliptic Integral. The length of the Elliptic Quadrant is \[ s' = aE\left(e, \frac{\pi}{2}\right). \] \Example. The equation of an ellipse is \[ %[** PP: Displaying \frac{x^{2}}{16.81} + \dfrac{y^{2}}{16} = 1; \] required the length of an arc whose abscissas are $1.061162$ and $4.100000$: of the quadrantal arc. \\ \null\hfill\textit{Ans.} $5.18912$; $6.36189$. \Section{RECTIFICATION OF THE HYPERBOLA.} On the curve of the hyperbola, construct a straight line perpendicular to the axis~$x$, and at a distance from the centre equal to the projection of~$b$, the transverse axis, upon the asymptote, i.e.~equal to $\dfrac{b^{2}}{\sqrt{a^{2} + b^{2}}}$\DPtypo{}{.} Join the projection of the %% -----File: 123.png---Folio 117------- given point of the hyperbola on this line with the centre. The angle which this joining line makes with the axis of~$x$ we will call~$\phi$. If~$y$ is the ordinate of the point on the hyperbola, then evidently \[ y = \frac{b^{2} \tan \phi}{\sqrt{a^{2} + b^{2}}}, \] and \[ x = \frac{a}{\cos \phi} \sqrt{1 - \frac{a^{2} \sin^{2} \phi}{a^{2} + b^{2}}} = \frac{a}{\cos \phi} \sqrt{1 - \frac{1}{e^{2}} \sin^{2} \phi}; \] whence \begin{align*} s &= \int \sqrt{\DPtypo{ax}{dx}^{2} + dy^{2}} = \frac{b^{2}}{c} \int_{0}^{\phi} \frac{d \phi}{\cos^{2} \phi \sqrt{1 - \dfrac{1}{e^{2}} \sin^{2} \phi}} \\ &= \frac{b^{2}}{c} \int_{0}^{\phi} \frac{d \phi}{\cos^{2} \phi \sqrt{1 - k^{2} \sin^{2} \phi}}. \end{align*} But \begin{gather*} d(\tan \phi \sqrt{1 - k^{2} \sin^{2} \phi}) = d \phi \sqrt{1 - k^{2} \sin^{2} \phi} + d \phi \frac{1 - k^{2}}{\sqrt{1 - e^{2} \sin^{2} \phi}} \\ % - \frac{1 - k^{2}}{\cos^{2} \phi \sqrt{1 - e^{2} \sin^{2} \phi}}\, d \phi. \end{gather*} Consequently \begin{align*} s &= \frac{b^{2}}{c} \int_{0}^{\phi} \frac{d \phi}{\cos^{2} \phi \sqrt{1 - k^{2} \sin^{2} \phi}} \\ &= \frac{b^{2}}{c} F(k, \phi) - cE(k, \phi) + c \tan \phi \Delta (k, \phi) \\ &= \frac{b^{2}}{ae} F\left(\frac{1}{e}, \phi\right) - aeE\left(\frac{1}{e}, \phi\right) + ae \tan \phi \Delta \left(\frac{1}{e}, \phi\right). \end{align*} %% -----File: 124.png---Folio 118------- \Example. Find the length of the arc of the hyperbola \[ %[** PP: Displaying here, below] \frac{x^{2}}{20.25} - \frac{y^{2}}{400} = 1 \] from the vertex to the point whose ordinate is~$\dfrac{40}{2.05} \tan 15°$. \\ \null\hfill\textit{Ans.} $5.231184$. \Example. Find the length of the arc of the hyperbola \[ \frac{x^{2}}{144} - \frac{y^{2}}{81} = 100 \] from the vertex to the point whose ordinate is~$0.6$. \\ \null\hfill\textit{Ans.} $0.6582$. %%%%%%%%%%%%%%%%%%%%%%%%% GUTENBERG LICENSE %%%%%%%%%%%%%%%%%%%%%%%%%% \cleardoublepage \backmatter \phantomsection \pdfbookmark[-1]{Back Matter}{Back Matter} \phantomsection \pdfbookmark[0]{PG License}{Project Gutenberg License} \fancyhead[C]{\textsc{LICENSING}} \begin{PGtext} End of the Project Gutenberg EBook of Elliptic Functions, by Arthur L. Baker *** END OF THIS PROJECT GUTENBERG EBOOK ELLIPTIC FUNCTIONS *** ***** This file should be named 31076-pdf.pdf or 31076-pdf.zip ***** This and all associated files of various formats will be found in: http://www.gutenberg.org/3/1/0/7/31076/ Produced by Andrew D. Hwang, Brenda Lewis and the Online Distributed Proofreading Team at http://www.pgdp.net (This file was produced from images from the Cornell University Library: Historical Mathematics Monographs collection.) Updated editions will replace the previous one--the old editions will be renamed. Creating the works from public domain print editions means that no one owns a United States copyright in these works, so the Foundation (and you!) can copy and distribute it in the United States without permission and without paying copyright royalties. Special rules, set forth in the General Terms of Use part of this license, apply to copying and distributing Project Gutenberg-tm electronic works to protect the PROJECT GUTENBERG-tm concept and trademark. Project Gutenberg is a registered trademark, and may not be used if you charge for the eBooks, unless you receive specific permission. If you do not charge anything for copies of this eBook, complying with the rules is very easy. You may use this eBook for nearly any purpose such as creation of derivative works, reports, performances and research. They may be modified and printed and given away--you may do practically ANYTHING with public domain eBooks. Redistribution is subject to the trademark license, especially commercial redistribution. *** START: FULL LICENSE *** THE FULL PROJECT GUTENBERG LICENSE PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK To protect the Project Gutenberg-tm mission of promoting the free distribution of electronic works, by using or distributing this work (or any other work associated in any way with the phrase "Project Gutenberg"), you agree to comply with all the terms of the Full Project Gutenberg-tm License (available with this file or online at http://gutenberg.org/license). Section 1. General Terms of Use and Redistributing Project Gutenberg-tm electronic works 1.A. By reading or using any part of this Project Gutenberg-tm electronic work, you indicate that you have read, understand, agree to and accept all the terms of this license and intellectual property (trademark/copyright) agreement. If you do not agree to abide by all the terms of this agreement, you must cease using and return or destroy all copies of Project Gutenberg-tm electronic works in your possession. If you paid a fee for obtaining a copy of or access to a Project Gutenberg-tm electronic work and you do not agree to be bound by the terms of this agreement, you may obtain a refund from the person or entity to whom you paid the fee as set forth in paragraph 1.E.8. 1.B. "Project Gutenberg" is a registered trademark. It may only be used on or associated in any way with an electronic work by people who agree to be bound by the terms of this agreement. There are a few things that you can do with most Project Gutenberg-tm electronic works even without complying with the full terms of this agreement. See paragraph 1.C below. There are a lot of things you can do with Project Gutenberg-tm electronic works if you follow the terms of this agreement and help preserve free future access to Project Gutenberg-tm electronic works. See paragraph 1.E below. 1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation" or PGLAF), owns a compilation copyright in the collection of Project Gutenberg-tm electronic works. Nearly all the individual works in the collection are in the public domain in the United States. If an individual work is in the public domain in the United States and you are located in the United States, we do not claim a right to prevent you from copying, distributing, performing, displaying or creating derivative works based on the work as long as all references to Project Gutenberg are removed. Of course, we hope that you will support the Project Gutenberg-tm mission of promoting free access to electronic works by freely sharing Project Gutenberg-tm works in compliance with the terms of this agreement for keeping the Project Gutenberg-tm name associated with the work. You can easily comply with the terms of this agreement by keeping this work in the same format with its attached full Project Gutenberg-tm License when you share it without charge with others. 1.D. The copyright laws of the place where you are located also govern what you can do with this work. Copyright laws in most countries are in a constant state of change. If you are outside the United States, check the laws of your country in addition to the terms of this agreement before downloading, copying, displaying, performing, distributing or creating derivative works based on this work or any other Project Gutenberg-tm work. The Foundation makes no representations concerning the copyright status of any work in any country outside the United States. 1.E. Unless you have removed all references to Project Gutenberg: 1.E.1. The following sentence, with active links to, or other immediate access to, the full Project Gutenberg-tm License must appear prominently whenever any copy of a Project Gutenberg-tm work (any work on which the phrase "Project Gutenberg" appears, or with which the phrase "Project Gutenberg" is associated) is accessed, displayed, performed, viewed, copied or distributed: This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org 1.E.2. If an individual Project Gutenberg-tm electronic work is derived from the public domain (does not contain a notice indicating that it is posted with permission of the copyright holder), the work can be copied and distributed to anyone in the United States without paying any fees or charges. If you are redistributing or providing access to a work with the phrase "Project Gutenberg" associated with or appearing on the work, you must comply either with the requirements of paragraphs 1.E.1 through 1.E.7 or obtain permission for the use of the work and the Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or 1.E.9. 1.E.3. If an individual Project Gutenberg-tm electronic work is posted with the permission of the copyright holder, your use and distribution must comply with both paragraphs 1.E.1 through 1.E.7 and any additional terms imposed by the copyright holder. Additional terms will be linked to the Project Gutenberg-tm License for all works posted with the permission of the copyright holder found at the beginning of this work. 1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm License terms from this work, or any files containing a part of this work or any other work associated with Project Gutenberg-tm. 1.E.5. Do not copy, display, perform, distribute or redistribute this electronic work, or any part of this electronic work, without prominently displaying the sentence set forth in paragraph 1.E.1 with active links or immediate access to the full terms of the Project Gutenberg-tm License. 1.E.6. You may convert to and distribute this work in any binary, compressed, marked up, nonproprietary or proprietary form, including any word processing or hypertext form. However, if you provide access to or distribute copies of a Project Gutenberg-tm work in a format other than "Plain Vanilla ASCII" or other format used in the official version posted on the official Project Gutenberg-tm web site (www.gutenberg.org), you must, at no additional cost, fee or expense to the user, provide a copy, a means of exporting a copy, or a means of obtaining a copy upon request, of the work in its original "Plain Vanilla ASCII" or other form. Any alternate format must include the full Project Gutenberg-tm License as specified in paragraph 1.E.1. 1.E.7. Do not charge a fee for access to, viewing, displaying, performing, copying or distributing any Project Gutenberg-tm works unless you comply with paragraph 1.E.8 or 1.E.9. 1.E.8. You may charge a reasonable fee for copies of or providing access to or distributing Project Gutenberg-tm electronic works provided that - You pay a royalty fee of 20% of the gross profits you derive from the use of Project Gutenberg-tm works calculated using the method you already use to calculate your applicable taxes. The fee is owed to the owner of the Project Gutenberg-tm trademark, but he has agreed to donate royalties under this paragraph to the Project Gutenberg Literary Archive Foundation. Royalty payments must be paid within 60 days following each date on which you prepare (or are legally required to prepare) your periodic tax returns. Royalty payments should be clearly marked as such and sent to the Project Gutenberg Literary Archive Foundation at the address specified in Section 4, "Information about donations to the Project Gutenberg Literary Archive Foundation." - You provide a full refund of any money paid by a user who notifies you in writing (or by e-mail) within 30 days of receipt that s/he does not agree to the terms of the full Project Gutenberg-tm License. You must require such a user to return or destroy all copies of the works possessed in a physical medium and discontinue all use of and all access to other copies of Project Gutenberg-tm works. - You provide, in accordance with paragraph 1.F.3, a full refund of any money paid for a work or a replacement copy, if a defect in the electronic work is discovered and reported to you within 90 days of receipt of the work. - You comply with all other terms of this agreement for free distribution of Project Gutenberg-tm works. 1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm electronic work or group of works on different terms than are set forth in this agreement, you must obtain permission in writing from both the Project Gutenberg Literary Archive Foundation and Michael Hart, the owner of the Project Gutenberg-tm trademark. Contact the Foundation as set forth in Section 3 below. 1.F. 1.F.1. Project Gutenberg volunteers and employees expend considerable effort to identify, do copyright research on, transcribe and proofread public domain works in creating the Project Gutenberg-tm collection. Despite these efforts, Project Gutenberg-tm electronic works, and the medium on which they may be stored, may contain "Defects," such as, but not limited to, incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other medium, a computer virus, or computer codes that damage or cannot be read by your equipment. 1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right of Replacement or Refund" described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg-tm trademark, and any other party distributing a Project Gutenberg-tm electronic work under this agreement, disclaim all liability to you for damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH F3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE. 1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem. 1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you 'AS-IS' WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR ANY PURPOSE. 1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions. 1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg-tm electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg-tm electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg-tm work, (b) alteration, modification, or additions or deletions to any Project Gutenberg-tm work, and (c) any Defect you cause. Section 2. Information about the Mission of Project Gutenberg-tm Project Gutenberg-tm is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life. Volunteers and financial support to provide volunteers with the assistance they need, are critical to reaching Project Gutenberg-tm's goals and ensuring that the Project Gutenberg-tm collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg-tm and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation web page at http://www.pglaf.org. Section 3. Information about the Project Gutenberg Literary Archive Foundation The Project Gutenberg Literary Archive Foundation is a non profit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation's EIN or federal tax identification number is 64-6221541. Its 501(c)(3) letter is posted at http://pglaf.org/fundraising. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state's laws. The Foundation's principal office is located at 4557 Melan Dr. S. Fairbanks, AK, 99712., but its volunteers and employees are scattered throughout numerous locations. Its business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887, email business@pglaf.org. Email contact links and up to date contact information can be found at the Foundation's web site and official page at http://pglaf.org For additional contact information: Dr. Gregory B. Newby Chief Executive and Director gbnewby@pglaf.org Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation Project Gutenberg-tm depends upon and cannot survive without wide spread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine readable form accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS. The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit http://pglaf.org While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate. International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff. Please check the Project Gutenberg Web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: http://pglaf.org/donate Section 5. General Information About Project Gutenberg-tm electronic works. Professor Michael S. Hart is the originator of the Project Gutenberg-tm concept of a library of electronic works that could be freely shared with anyone. For thirty years, he produced and distributed Project Gutenberg-tm eBooks with only a loose network of volunteer support. Project Gutenberg-tm eBooks are often created from several printed editions, all of which are confirmed as Public Domain in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition. Most people start at our Web site which has the main PG search facility: http://www.gutenberg.org This Web site includes information about Project Gutenberg-tm, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks. \end{PGtext} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % End of the Project Gutenberg EBook of Elliptic Functions, by Arthur L. Baker % % % *** END OF THIS PROJECT GUTENBERG EBOOK ELLIPTIC FUNCTIONS *** % % % % ***** This file should be named 31076-t.tex or 31076-t.zip ***** % % This and all associated files of various formats will be found in: % % http://www.gutenberg.org/3/1/0/7/31076/ % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \end{document} ### @ControlwordReplace = ( ['\\Example', 'Example'] ); @MathEnvironments = ( ['\\begin{DPalign*}','\\end{DPalign*}',''], ['\\begin{DPgather*}','\\end{DPgather*}',''] ); @ControlwordArguments = ( ['\\hyperref', 0, 0, '', ''], ['\\IntroChapter', 1, 0, 'Introductory Chapter. ', '', 1, 1, '', ''], ['\\Chapter', 0, 0, '', '', 1, 1, 'Chapter ', '. ', 1, 1, '', ''], ['\\Chapref', 1, 1, '', '', 1, 1, ' ', ''], ['\\Eqref', 0, 0, '', '', 1, 1, '', '', 1, 0, '', '', 1, 1, ' ', ''], ['\\Pageref', 1, 1, '', ' ', 1, 1, '', ''], ['\\DPtypo', 1, 0, '', '', 1, 1, '', ''], ['\\DPnote', 1, 0, '', ''], ['\\First', 1, 1, '', ''] ); ### This is pdfTeXk, Version 3.141592-1.40.3 (Web2C 7.5.6) (format=pdflatex 2009.12.9) 25 JAN 2010 08:06 entering extended mode %&-line parsing enabled. **31076-t.tex (./31076-t.tex LaTeX2e <2005/12/01> Babel and hyphenation patterns for english, usenglishmax, dumylang, noh yphenation, arabic, farsi, croatian, ukrainian, russian, bulgarian, czech, slov ak, danish, dutch, finnish, basque, french, german, ngerman, ibycus, greek, mon ogreek, ancientgreek, hungarian, italian, latin, mongolian, norsk, icelandic, i nterlingua, turkish, coptic, romanian, welsh, serbian, slovenian, estonian, esp eranto, uppersorbian, indonesian, polish, portuguese, spanish, catalan, galicia n, swedish, ukenglish, pinyin, loaded. (/usr/share/texmf-texlive/tex/latex/base/book.cls Document Class: book 2005/09/16 v1.4f Standard LaTeX document class (/usr/share/texmf-texlive/tex/latex/base/leqno.clo File: leqno.clo 1998/08/17 v1.1c Standard LaTeX option (left equation numbers) ) (/usr/share/texmf-texlive/tex/latex/base/bk12.clo File: bk12.clo 2005/09/16 v1.4f Standard LaTeX file (size option) ) \c@part=\count79 \c@chapter=\count80 \c@section=\count81 \c@subsection=\count82 \c@subsubsection=\count83 \c@paragraph=\count84 \c@subparagraph=\count85 \c@figure=\count86 \c@table=\count87 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texmf-texlive/tex/latex/base/inputenc.sty Package: inputenc 2006/05/05 v1.1b Input encoding file \inpenc@prehook=\toks14 \inpenc@posthook=\toks15 (/usr/share/texmf-texlive/tex/latex/base/latin1.def File: latin1.def 2006/05/05 v1.1b Input encoding file )) (/usr/share/texmf-texlive/tex/latex/psnfss/mathpazo.sty Package: mathpazo 2005/04/12 PSNFSS-v9.2a Palatino w/ Pazo Math (D.Puga, WaS) \symupright=\mathgroup4 ) (/usr/share/texmf-texlive/tex/latex/base/ifthen.sty Package: ifthen 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC) ) (/usr/share/texmf-texlive/tex/latex/amsmath/amsmath.sty Package: amsmath 2000/07/18 v2.13 AMS math features \@mathmargin=\skip43 For additional information on amsmath, use the `?' option. (/usr/share/texmf-texlive/tex/latex/amsmath/amstext.sty Package: amstext 2000/06/29 v2.01 (/usr/share/texmf-texlive/tex/latex/amsmath/amsgen.sty File: amsgen.sty 1999/11/30 v2.0 \@emptytoks=\toks16 \ex@=\dimen103 )) (/usr/share/texmf-texlive/tex/latex/amsmath/amsbsy.sty Package: amsbsy 1999/11/29 v1.2d \pmbraise@=\dimen104 ) (/usr/share/texmf-texlive/tex/latex/amsmath/amsopn.sty Package: amsopn 1999/12/14 v2.01 operator names ) \inf@bad=\count88 LaTeX Info: Redefining \frac on input line 211. \uproot@=\count89 \leftroot@=\count90 LaTeX Info: Redefining \overline on input line 307. \classnum@=\count91 \DOTSCASE@=\count92 LaTeX Info: Redefining \ldots on input line 379. LaTeX Info: Redefining \dots on input line 382. LaTeX Info: Redefining \cdots on input line 467. \Mathstrutbox@=\box26 \strutbox@=\box27 \big@size=\dimen105 LaTeX Font Info: Redeclaring font encoding OML on input line 567. LaTeX Font Info: Redeclaring font encoding OMS on input line 568. \macc@depth=\count93 \c@MaxMatrixCols=\count94 \dotsspace@=\muskip10 \c@parentequation=\count95 \dspbrk@lvl=\count96 \tag@help=\toks17 \row@=\count97 \column@=\count98 \maxfields@=\count99 \andhelp@=\toks18 \eqnshift@=\dimen106 \alignsep@=\dimen107 \tagshift@=\dimen108 \tagwidth@=\dimen109 \totwidth@=\dimen110 \lineht@=\dimen111 \@envbody=\toks19 \multlinegap=\skip44 \multlinetaggap=\skip45 \mathdisplay@stack=\toks20 LaTeX Info: Redefining \[ on input line 2666. LaTeX Info: Redefining \] on input line 2667. ) (/usr/share/texmf-texlive/tex/latex/amsfonts/amssymb.sty Package: amssymb 2002/01/22 v2.2d (/usr/share/texmf-texlive/tex/latex/amsfonts/amsfonts.sty Package: amsfonts 2001/10/25 v2.2f \symAMSa=\mathgroup5 \symAMSb=\mathgroup6 LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' (Font) U/euf/m/n --> U/euf/b/n on input line 132. )) (/usr/share/texmf-texlive/tex/latex/base/alltt.sty Package: alltt 1997/06/16 v2.0g defines alltt environment ) (/usr/share/texmf-texlive/tex/latex/tools/array.sty Package: array 2005/08/23 v2.4b Tabular extension package (FMi) \col@sep=\dimen112 \extrarowheight=\dimen113 \NC@list=\toks21 \extratabsurround=\skip46 \backup@length=\skip47 ) (/usr/share/texmf-texlive/tex/latex/footmisc/footmisc.sty Package: footmisc 2005/03/17 v5.3d a miscellany of footnote facilities \FN@temptoken=\toks22 \footnotemargin=\dimen114 \c@pp@next@reset=\count100 Package footmisc Info: Declaring symbol style bringhurst on input line 817. Package footmisc Info: Declaring symbol style chicago on input line 818. Package footmisc Info: Declaring symbol style wiley on input line 819. Package footmisc Info: Declaring symbol style lamport-robust on input line 823. Package footmisc Info: Declaring symbol style lamport* on input line 831. Package footmisc Info: Declaring symbol style lamport*-robust on input line 840 . ) (/usr/share/texmf-texlive/tex/latex/bigfoot/perpage.sty Package: perpage 2006/07/15 1.12 Reset/sort counters per page \c@abspage=\count101 ) (/usr/share/texmf-texlive/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texmf-texlive/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks23 ) (/usr/share/texmf-texlive/tex/latex/graphics/graphics.sty Package: graphics 2006/02/20 v1.0o Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texmf-texlive/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/etc/texmf/tex/latex/config/graphics.cfg File: graphics.cfg 2007/01/18 v1.5 graphics configuration of teTeX/TeXLive ) Package graphics Info: Driver file: pdftex.def on input line 90. (/usr/share/texmf-texlive/tex/latex/pdftex-def/pdftex.def File: pdftex.def 2007/01/08 v0.04d Graphics/color for pdfTeX \Gread@gobject=\count102 )) \Gin@req@height=\dimen115 \Gin@req@width=\dimen116 ) (/usr/share/texmf-texlive/tex/latex/wrapfig/wrapfig.sty \wrapoverhang=\dimen117 \WF@size=\dimen118 \c@WF@wrappedlines=\count103 \WF@box=\box28 \WF@everypar=\toks24 Package: wrapfig 2003/01/31 v 3.6 ) (/usr/share/texmf-texlive/tex/latex/tools/indentfirst.sty Package: indentfirst 1995/11/23 v1.03 Indent first paragraph (DPC) ) (/usr/share/texmf-texlive/tex/latex/textcase/textcase.sty Package: textcase 2004/10/07 v0.07 Text only upper/lower case changing (DPC) ) (/usr/share/texmf-texlive/tex/latex/tools/calc.sty Package: calc 2005/08/06 v4.2 Infix arithmetic (KKT,FJ) \calc@Acount=\count104 \calc@Bcount=\count105 \calc@Adimen=\dimen119 \calc@Bdimen=\dimen120 \calc@Askip=\skip48 \calc@Bskip=\skip49 LaTeX Info: Redefining \setlength on input line 75. LaTeX Info: Redefining \addtolength on input line 76. \calc@Ccount=\count106 \calc@Cskip=\skip50 ) (/usr/share/texmf-texlive/tex/latex/base/fix-cm.sty Package: fix-cm 2006/03/24 v1.1n fixes to LaTeX (/usr/share/texmf-texlive/tex/latex/base/ts1enc.def File: ts1enc.def 2001/06/05 v3.0e (jk/car/fm) Standard LaTeX file )) (/usr/share/texmf-texlive/tex/latex/soul/soul.sty Package: soul 2003/11/17 v2.4 letterspacing/underlining (mf) \SOUL@word=\toks25 \SOUL@lasttoken=\toks26 \SOUL@cmds=\toks27 \SOUL@buffer=\toks28 \SOUL@token=\toks29 \SOUL@spaceskip=\skip51 \SOUL@ttwidth=\dimen121 \SOUL@uldp=\dimen122 \SOUL@ulht=\dimen123 ) (/usr/share/texmf-texlive/tex/latex/fancyhdr/fancyhdr.sty \fancy@headwidth=\skip52 \f@ncyO@elh=\skip53 \f@ncyO@erh=\skip54 \f@ncyO@olh=\skip55 \f@ncyO@orh=\skip56 \f@ncyO@elf=\skip57 \f@ncyO@erf=\skip58 \f@ncyO@olf=\skip59 \f@ncyO@orf=\skip60 ) (/usr/share/texmf-texlive/tex/latex/geometry/geometry.sty Package: geometry 2002/07/08 v3.2 Page Geometry \Gm@cnth=\count107 \Gm@cntv=\count108 \c@Gm@tempcnt=\count109 \Gm@bindingoffset=\dimen124 \Gm@wd@mp=\dimen125 \Gm@odd@mp=\dimen126 \Gm@even@mp=\dimen127 \Gm@dimlist=\toks30 (/usr/share/texmf-texlive/tex/xelatex/xetexconfig/geometry.cfg)) (/usr/share/te xmf-texlive/tex/latex/hyperref/hyperref.sty Package: hyperref 2007/02/07 v6.75r Hypertext links for LaTeX \@linkdim=\dimen128 \Hy@linkcounter=\count110 \Hy@pagecounter=\count111 (/usr/share/texmf-texlive/tex/latex/hyperref/pd1enc.def File: pd1enc.def 2007/02/07 v6.75r Hyperref: PDFDocEncoding definition (HO) ) (/etc/texmf/tex/latex/config/hyperref.cfg File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive ) (/usr/share/texmf-texlive/tex/latex/oberdiek/kvoptions.sty Package: kvoptions 2006/08/22 v2.4 Connects package keyval with LaTeX options ( HO) ) Package hyperref Info: Option `hyperfootnotes' set `false' on input line 2238. Package hyperref Info: Option `bookmarks' set `true' on input line 2238. Package hyperref Info: Option `linktocpage' set `false' on input line 2238. Package hyperref Info: Option `pdfdisplaydoctitle' set `true' on input line 223 8. Package hyperref Info: Option `pdfpagelabels' set `true' on input line 2238. Package hyperref Info: Option `bookmarksopen' set `true' on input line 2238. Package hyperref Info: Option `colorlinks' set `true' on input line 2238. Package hyperref Info: Hyper figures OFF on input line 2288. Package hyperref Info: Link nesting OFF on input line 2293. Package hyperref Info: Hyper index ON on input line 2296. Package hyperref Info: Plain pages OFF on input line 2303. Package hyperref Info: Backreferencing OFF on input line 2308. Implicit mode ON; LaTeX internals redefined Package hyperref Info: Bookmarks ON on input line 2444. (/usr/share/texmf-texlive/tex/latex/ltxmisc/url.sty \Urlmuskip=\muskip11 Package: url 2005/06/27 ver 3.2 Verb mode for urls, etc. ) LaTeX Info: Redefining \url on input line 2599. \Fld@menulength=\count112 \Field@Width=\dimen129 \Fld@charsize=\dimen130 \Choice@toks=\toks31 \Field@toks=\toks32 Package hyperref Info: Hyper figures OFF on input line 3102. Package hyperref Info: Link nesting OFF on input line 3107. Package hyperref Info: Hyper index ON on input line 3110. Package hyperref Info: backreferencing OFF on input line 3117. Package hyperref Info: Link coloring ON on input line 3120. \Hy@abspage=\count113 \c@Item=\count114 ) *hyperref using driver hpdftex* (/usr/share/texmf-texlive/tex/latex/hyperref/hpdftex.def File: hpdftex.def 2007/02/07 v6.75r Hyperref driver for pdfTeX \Fld@listcount=\count115 ) \c@pp@a@footnote=\count116 \TmpLen=\skip61 \DP@lign@no=\count117 \DP@lignb@dy=\toks33 (./31076-t.aux) \openout1 = `31076-t.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 571. LaTeX Font Info: ... okay on input line 571. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 571. LaTeX Font Info: ... okay on input line 571. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 571. LaTeX Font Info: ... okay on input line 571. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 571. LaTeX Font Info: ... okay on input line 571. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 571. LaTeX Font Info: ... okay on input line 571. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 571. LaTeX Font Info: ... okay on input line 571. LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 571. LaTeX Font Info: ... okay on input line 571. LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 571. LaTeX Font Info: ... okay on input line 571. LaTeX Font Info: Try loading font information for OT1+pplj on input line 571 . (/usr/share/texmf-texlive/tex/latex/psnfss/ot1pplj.fd File: ot1pplj.fd 2004/09/06 font definitions for OT1/pplj. ) (/usr/share/texmf/tex/context/base/supp-pdf.tex [Loading MPS to PDF converter (version 2006.09.02).] \scratchcounter=\count118 \scratchdimen=\dimen131 \scratchbox=\box29 \nofMPsegments=\count119 \nofMParguments=\count120 \everyMPshowfont=\toks34 \MPscratchCnt=\count121 \MPscratchDim=\dimen132 \MPnumerator=\count122 \everyMPtoPDFconversion=\toks35 ) -------------------- Geometry parameters paper: class default landscape: -- twocolumn: -- twoside: true asymmetric: -- h-parts: 9.03374pt, 379.4175pt, 9.03375pt v-parts: 6.55762pt, 513.5613pt, 9.83646pt hmarginratio: 1:1 vmarginratio: 2:3 lines: -- heightrounded: -- bindingoffset: 0.0pt truedimen: -- includehead: true includefoot: true includemp: -- driver: pdftex -------------------- Page layout dimensions and switches \paperwidth 397.48499pt \paperheight 529.95537pt \textwidth 379.4175pt \textheight 451.6875pt \oddsidemargin -63.23625pt \evensidemargin -63.23624pt \topmargin -65.71237pt \headheight 12.0pt \headsep 19.8738pt \footskip 30.0pt \marginparwidth 98.0pt \marginparsep 7.0pt \columnsep 10.0pt \skip\footins 10.8pt plus 4.0pt minus 2.0pt \hoffset 0.0pt \voffset 0.0pt \mag 1000 \@twosidetrue \@mparswitchtrue (1in=72.27pt, 1cm=28.45pt) ----------------------- (/usr/share/texmf-texlive/tex/latex/graphics/color.sty Package: color 2005/11/14 v1.0j Standard LaTeX Color (DPC) (/etc/texmf/tex/latex/config/color.cfg File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive ) Package color Info: Driver file: pdftex.def on input line 130. ) Package hyperref Info: Link coloring ON on input line 571. (/usr/share/texmf-texlive/tex/latex/hyperref/nameref.sty Package: nameref 2006/12/27 v2.28 Cross-referencing by name of section (/usr/share/texmf-texlive/tex/latex/oberdiek/refcount.sty Package: refcount 2006/02/20 v3.0 Data extraction from references (HO) ) \c@section@level=\count123 ) LaTeX Info: Redefining \ref on input line 571. LaTeX Info: Redefining \pageref on input line 571. (./31076-t.out) (./31076-t.out) \@outlinefile=\write3 \openout3 = `31076-t.out'. LaTeX Font Info: Try loading font information for OT1+ppl on input line 609. (/usr/share/texmf-texlive/tex/latex/psnfss/ot1ppl.fd File: ot1ppl.fd 2001/06/04 font definitions for OT1/ppl. ) LaTeX Font Info: Try loading font information for OML+zplm on input line 609 . (/usr/share/texmf-texlive/tex/latex/psnfss/omlzplm.fd File: omlzplm.fd 2002/09/08 Fontinst v1.914 font definitions for OML/zplm. ) LaTeX Font Info: Try loading font information for OMS+zplm on input line 609 . (/usr/share/texmf-texlive/tex/latex/psnfss/omszplm.fd File: omszplm.fd 2002/09/08 Fontinst v1.914 font definitions for OMS/zplm. ) LaTeX Font Info: Try loading font information for OMX+zplm on input line 609 . (/usr/share/texmf-texlive/tex/latex/psnfss/omxzplm.fd File: omxzplm.fd 2002/09/08 Fontinst v1.914 font definitions for OMX/zplm. ) LaTeX Font Info: Try loading font information for OT1+zplm on input line 609 . (/usr/share/texmf-texlive/tex/latex/psnfss/ot1zplm.fd File: ot1zplm.fd 2002/09/08 Fontinst v1.914 font definitions for OT1/zplm. ) LaTeX Font Info: Font shape `U/msa/m/n' will be (Font) scaled to size 11.46208pt on input line 609. LaTeX Font Info: Font shape `U/msa/m/n' will be (Font) scaled to size 9.37807pt on input line 609. LaTeX Font Info: Font shape `U/msa/m/n' will be (Font) scaled to size 8.33606pt on input line 609. LaTeX Font Info: Font shape `U/msb/m/n' will be (Font) scaled to size 11.46208pt on input line 609. LaTeX Font Info: Font shape `U/msb/m/n' will be (Font) scaled to size 9.37807pt on input line 609. LaTeX Font Info: Font shape `U/msb/m/n' will be (Font) scaled to size 8.33606pt on input line 609. [1 {/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}] LaTeX Font Info: Font shape `OT1/pplj/bx/n' in size <14.4> not available (Font) Font shape `OT1/pplj/b/n' tried instead on input line 633. [2 ] [1 ] [2 ] [3 ] [4] LaTeX Font Info: Font shape `OT1/pplj/bx/n' in size <24.88> not available (Font) Font shape `OT1/pplj/b/n' tried instead on input line 776. (./31076-t.toc LaTeX Font Info: Font shape `U/msa/m/n' will be (Font) scaled to size 11.40997pt on input line 15. LaTeX Font Info: Font shape `U/msa/m/n' will be (Font) scaled to size 6.25204pt on input line 15. LaTeX Font Info: Font shape `U/msb/m/n' will be (Font) scaled to size 11.40997pt on input line 15. LaTeX Font Info: Font shape `U/msb/m/n' will be (Font) scaled to size 6.25204pt on input line 15. ) \tf@toc=\write4 \openout4 = `31076-t.toc'. [5 ] LaTeX Font Info: Font shape `OT1/pplj/bx/n' in size <17.28> not available (Font) Font shape `OT1/pplj/b/n' tried instead on input line 834. LaTeX Font Info: Font shape `U/msa/m/n' will be (Font) scaled to size 18.00587pt on input line 834. LaTeX Font Info: Font shape `U/msa/m/n' will be (Font) scaled to size 12.50409pt on input line 834. LaTeX Font Info: Font shape `U/msa/m/n' will be (Font) scaled to size 10.42007pt on input line 834. LaTeX Font Info: Font shape `U/msb/m/n' will be (Font) scaled to size 18.00587pt on input line 834. LaTeX Font Info: Font shape `U/msb/m/n' will be (Font) scaled to size 12.50409pt on input line 834. LaTeX Font Info: Font shape `U/msb/m/n' will be (Font) scaled to size 10.42007pt on input line 834. LaTeX Font Info: Font shape `U/msa/m/n' will be (Font) scaled to size 7.91925pt on input line 835. LaTeX Font Info: Font shape `U/msb/m/n' will be (Font) scaled to size 7.91925pt on input line 835. LaTeX Font Info: Calculating math sizes for size <7.6> on input line 835. LaTeX Font Info: Font shape `U/msa/m/n' will be (Font) scaled to size 6.01859pt on input line 835. LaTeX Font Info: Font shape `U/msa/m/n' will be (Font) scaled to size 4.75159pt on input line 835. LaTeX Font Info: Font shape `U/msb/m/n' will be (Font) scaled to size 6.01859pt on input line 835. LaTeX Font Info: Font shape `U/msb/m/n' will be (Font) scaled to size 4.75159pt on input line 835. [1 ] [2] LaTeX Font Info: Font shape `U/msa/m/n' will be (Font) scaled to size 7.29405pt on input line 915. LaTeX Font Info: Font shape `U/msa/m/n' will be (Font) scaled to size 5.21004pt on input line 915. LaTeX Font Info: Font shape `U/msb/m/n' will be (Font) scaled to size 7.29405pt on input line 915. LaTeX Font Info: Font shape `U/msb/m/n' will be (Font) scaled to size 5.21004pt on input line 915. [3] [4 ] Overfull \hbox (0.64647pt too wide) in paragraph at lines 963--966 \OT1/pplj/m/n/12 tran-scen-den-tal func-tions which de-pend upon these in-te-gr als, and which [] [5] [6] [7] [8] [9] [10] [11] Overfull \hbox (1.20306pt too wide) in paragraph at lines 1287--1287 [] [] Overfull \hbox (1.20306pt too wide) in alignment at lines 1287--1287 [] [] [] [12] [13] [14] [15] Overfull \hbox (0.63611pt too wide) in paragraph at lines 1425--1427 []\OT1/pplj/m/n/12 The quan-tity $\OML/zplm/m/it/11 k$ \OT1/pplj/m/n/12 is call ed the \OT1/pplj/m/it/12 mod-u-lus\OT1/pplj/m/n/12 , and the ex-pres-sion $[]$ [] [16 ] <./images/023a.pdf, id=316, 76.285pt x 106.3975pt> File: ./images/023a.pdf Graphic file (type pdf) [17 <./images/023a.pdf>] <./images/024a.pdf, id=335, 82 .3075pt x 126.4725pt> File: ./images/024a.pdf Graphic file (type pdf) Overfull \hbox (1.00354pt too wide) in paragraph at lines 1532--1533 [][] [] <./images/025a.pdf, id=336, 146.5475pt x 157.58875pt> File: ./images/025a.pdf Graphic file (type pdf) [18 <./images/024a.pdf>] [19 <./images/025a.pdf>] [20] [21] [22] [23] [24 ] [25] [26] [27] [28] [29] [30] [31] [32] <./images/036a.pdf, id=500, 190.7125p t x 107.40125pt> File: ./images/036a.pdf Graphic file (type pdf) [33 <./images/036a.pdf>] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [4 5] [46] [47] [48] [49] [50 ] [51] [52] LaTeX Font Info: Font shape `U/msa/m/n' will be (Font) scaled to size 15.0049pt on input line 2931. LaTeX Font Info: Font shape `U/msb/m/n' will be (Font) scaled to size 15.0049pt on input line 2931. [53 ] [54] [55] [56 ] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71 ] [72] [73] [74 ] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86 ] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96 ] [97] [98] [99] [100] [101 ] [102] [103] [104] [105 ] [106] [107] [108] [109] [110] [111 ] [112] [113] [114] [115] [116] [117] [118] [119 ] [120] [121] [122] [123 ] [124] [125] [126] [127] [128 ] [129] [130] [131] [132 ] [133] [134] [135] [136] [137] [138] [139] [140] (./31076-t.aux) *File List* book.cls 2005/09/16 v1.4f Standard LaTeX document class leqno.clo 1998/08/17 v1.1c Standard LaTeX option (left equation numbers) bk12.clo 2005/09/16 v1.4f Standard LaTeX file (size option) inputenc.sty 2006/05/05 v1.1b Input encoding file latin1.def 2006/05/05 v1.1b Input encoding file mathpazo.sty 2005/04/12 PSNFSS-v9.2a Palatino w/ Pazo Math (D.Puga, WaS) ifthen.sty 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC) amsmath.sty 2000/07/18 v2.13 AMS math features amstext.sty 2000/06/29 v2.01 amsgen.sty 1999/11/30 v2.0 amsbsy.sty 1999/11/29 v1.2d amsopn.sty 1999/12/14 v2.01 operator names amssymb.sty 2002/01/22 v2.2d amsfonts.sty 2001/10/25 v2.2f alltt.sty 1997/06/16 v2.0g defines alltt environment array.sty 2005/08/23 v2.4b Tabular extension package (FMi) footmisc.sty 2005/03/17 v5.3d a miscellany of footnote facilities perpage.sty 2006/07/15 1.12 Reset/sort counters per page graphicx.sty 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) keyval.sty 1999/03/16 v1.13 key=value parser (DPC) graphics.sty 2006/02/20 v1.0o Standard LaTeX Graphics (DPC,SPQR) trig.sty 1999/03/16 v1.09 sin cos tan (DPC) graphics.cfg 2007/01/18 v1.5 graphics configuration of teTeX/TeXLive pdftex.def 2007/01/08 v0.04d Graphics/color for pdfTeX wrapfig.sty 2003/01/31 v 3.6 indentfirst.sty 1995/11/23 v1.03 Indent first paragraph (DPC) textcase.sty 2004/10/07 v0.07 Text only upper/lower case changing (DPC) calc.sty 2005/08/06 v4.2 Infix arithmetic (KKT,FJ) fix-cm.sty 2006/03/24 v1.1n fixes to LaTeX ts1enc.def 2001/06/05 v3.0e (jk/car/fm) Standard LaTeX file soul.sty 2003/11/17 v2.4 letterspacing/underlining (mf) fancyhdr.sty geometry.sty 2002/07/08 v3.2 Page Geometry geometry.cfg hyperref.sty 2007/02/07 v6.75r Hypertext links for LaTeX pd1enc.def 2007/02/07 v6.75r Hyperref: PDFDocEncoding definition (HO) hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive kvoptions.sty 2006/08/22 v2.4 Connects package keyval with LaTeX options (HO ) url.sty 2005/06/27 ver 3.2 Verb mode for urls, etc. hpdftex.def 2007/02/07 v6.75r Hyperref driver for pdfTeX ot1pplj.fd 2004/09/06 font definitions for OT1/pplj. supp-pdf.tex color.sty 2005/11/14 v1.0j Standard LaTeX Color (DPC) color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive nameref.sty 2006/12/27 v2.28 Cross-referencing by name of section refcount.sty 2006/02/20 v3.0 Data extraction from references (HO) 31076-t.out 31076-t.out ot1ppl.fd 2001/06/04 font definitions for OT1/ppl. omlzplm.fd 2002/09/08 Fontinst v1.914 font definitions for OML/zplm. omszplm.fd 2002/09/08 Fontinst v1.914 font definitions for OMS/zplm. omxzplm.fd 2002/09/08 Fontinst v1.914 font definitions for OMX/zplm. ot1zplm.fd 2002/09/08 Fontinst v1.914 font definitions for OT1/zplm. ./images/023a.pdf ./images/024a.pdf ./images/025a.pdf ./images/036a.pdf *********** ) Here is how much of TeX's memory you used: 6525 strings out of 94074 86973 string characters out of 1165153 231131 words of memory out of 1500000 8960 multiletter control sequences out of 10000+50000 85938 words of font info for 221 fonts, out of 1200000 for 2000 645 hyphenation exceptions out of 8191 43i,26n,43p,1270b,483s stack positions out of 5000i,500n,6000p,200000b,5000s {/usr/share/texmf-texlive/fonts/enc/dvips/base/8r.enc} Output written on 31076-t.pdf (147 pages, 597566 bytes). PDF statistics: 1836 PDF objects out of 2073 (max. 8388607) 674 named destinations out of 1000 (max. 131072) 245 words of extra memory for PDF output out of 10000 (max. 10000000)