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PREFACE.

The usual point of view in the study of mechanics is that where
the attention is mainly directed to the changes which take place in
the course of time in a given system. The principal problem is the
determination of the condition of the system with respect to con-
figuration and velocities at any required time, when its condition
in these respects has been given for some one time, and the funda-
mental equations are those which express the changes continually
taking place in the system. Inquiries of this kind are often sim-
plified by taking into consideration conditions of the system other
than those through which it actually passes or is supposed to pass,
but our attention is not usually carried beyond conditions differing
infinitesimally from those which are regarded as actual.

For some purposes, however, it is desirable to take a broader
view of the subject. We may imagine a great number of systems
of the same nature, but differing in the configurations and veloc-
ities which they have at a given instant, and differing not merely
infinitesimally, but it may be so as to embrace every conceivable
combination of configuration and velocities. And here we may set
the problem, not to follow a particular system through its succes-
sion of configurations, but to determine how the whole number of
systems will be distributed among the various conceivable configu-
rations and velocities at any required time, when the distribution
has been given for some one time. The fundamental equation for
this inquiry is that which gives the rate of change of the number of
systems which fall within any infinitesimal limits of configuration
and velocity.

Such inquiries have been called by Maxwell statistical. They be-
long to a branch of mechanics which owes its origin to the desire to
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explain the laws of thermodynamics on mechanical principles, and
of which Clausius, Maxwell, and Boltzmann are to be regarded as
the principal founders. The first inquiries in this field were indeed
somewhat narrower in their scope than that which has been men-
tioned, being applied to the particles of a system, rather than to
independent systems. Statistical inquiries were next directed to the
phases (or conditions with respect to configuration and velocity)
which succeed one another in a given system in the course of time.
The explicit consideration of a great number of systems and their
distribution in phase, and of the permanence or alteration of this
distribution in the course of time is perhaps first found in Boltz-
mann’s paper on the “Zusammenhang zwischen den Sätzen über
das Verhalten mehratomiger Gasmoleküle mit Jacobi’s Princip des
letzten Multiplicators” (1871).

But although, as a matter of history, statistical mechanics owes
its origin to investigations in thermodynamics, it seems eminently
worthy of an independent development, both on account of the el-
egance and simplicity of its principles, and because it yields new
results and places old truths in a new light in departments quite
outside of thermodynamics. Moreover, the separate study of this
branch of mechanics seems to afford the best foundation for the
study of rational thermodynamics and molecular mechanics.

The laws of thermodynamics, as empirically determined, express
the approximate and probable behavior of systems of a great number
of particles, or, more precisely, they express the laws of mechanics
for such systems as they appear to beings who have not the fine-
ness of perception to enable them to appreciate quantities of the
order of magnitude of those which relate to single particles, and
who cannot repeat their experiments often enough to obtain any
but the most probable results. The laws of statistical mechanics
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apply to conservative systems of any number of degrees of freedom,
and are exact. This does not make them more difficult to estab-
lish than the approximate laws for systems of a great many degrees
of freedom, or for limited classes of such systems. The reverse is
rather the case, for our attention is not diverted from what is es-
sential by the peculiarities of the system considered, and we are
not obliged to satisfy ourselves that the effect of the quantities and
circumstances neglected will be negligible in the result. The laws
of thermodynamics may be easily obtained from the principles of
statistical mechanics, of which they are the incomplete expression,
but they make a somewhat blind guide in our search for those laws.
This is perhaps the principal cause of the slow progress of ratio-
nal thermodynamics, as contrasted with the rapid deduction of the
consequences of its laws as empirically established. To this must
be added that the rational foundation of thermodynamics lay in a
branch of mechanics of which the fundamental notions and prin-
ciples, and the characteristic operations, were alike unfamiliar to
students of mechanics.

We may therefore confidently believe that nothing will more con-
duce to the clear apprehension of the relation of thermodynamics
to rational mechanics, and to the interpretation of observed phe-
nomena with reference to their evidence respecting the molecular
constitution of bodies, than the study of the fundamental notions
and principles of that department of mechanics to which thermody-
namics is especially related.

Moreover, we avoid the gravest difficulties when, giving up the
attempt to frame hypotheses concerning the constitution of material
bodies, we pursue statistical inquiries as a branch of rational me-
chanics. In the present state of science, it seems hardly possible to
frame a dynamic theory of molecular action which shall embrace the
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phenomena of thermodynamics, of radiation, and of the electrical
manifestations which accompany the union of atoms. Yet any the-
ory is obviously inadequate which does not take account of all these
phenomena. Even if we confine our attention to the phenomena dis-
tinctively thermodynamic, we do not escape difficulties in as simple
a matter as the number of degrees of freedom of a diatomic gas. It
is well known that while theory would assign to the gas six degrees
of freedom per molecule, in our experiments on specific heat we
cannot account for more than five. Certainly, one is building on an
insecure foundation, who rests his work on hypotheses concerning
the constitution of matter.

Difficulties of this kind have deterred the author from attempt-
ing to explain the mysteries of nature, and have forced him to be
contented with the more modest aim of deducing some of the more
obvious propositions relating to the statistical branch of mechan-
ics. Here, there can be no mistake in regard to the agreement of
the hypotheses with the facts of nature, for nothing is assumed in
that respect. The only error into which one can fall, is the want
of agreement between the premises and the conclusions, and this,
with care, one may hope, in the main, to avoid.

The matter of the present volume consists in large measure of
results which have been obtained by the investigators mentioned
above, although the point of view and the arrangement may be
different. These results, given to the public one by one in the order
of their discovery, have necessarily, in their original presentation,
not been arranged in the most logical manner.

In the first chapter we consider the general problem which has
been mentioned, and find what may be called the fundamental equa-
tion of statistical mechanics. A particular case of this equation will
give the condition of statistical equilibrium, i.e., the condition which
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the distribution of the systems in phase must satisfy in order that
the distribution shall be permanent. In the general case, the fun-
damental equation admits an integration, which gives a principle
which may be variously expressed, according to the point of view
from which it is regarded, as the conservation of density-in-phase,
or of extension-in-phase, or of probability of phase.

In the second chapter, we apply this principle of conservation of
probability of phase to the theory of errors in the calculated phases
of a system, when the determination of the arbitrary constants of
the integral equations are subject to error. In this application, we
do not go beyond the usual approximations. In other words, we
combine the principle of conservation of probability of phase, which
is exact, with those approximate relations, which it is customary to
assume in the “theory of errors.”

In the third chapter we apply the principle of conservation of
extension-in-phase to the integration of the differential equations of
motion. This gives Jacobi’s “last multiplier,” as has been shown by
Boltzmann.

In the fourth and following chapters we return to the consider-
ation of statistical equilibrium, and confine our attention to con-
servative systems. We consider especially ensembles of systems in
which the index (or logarithm) of probability of phase is a linear
function of the energy. This distribution, on account of its unique
importance in the theory of statistical equilibrium, I have ventured
to call canonical, and the divisor of the energy, the modulus of dis-
tribution. The moduli of ensembles have properties analogous to
temperature, in that equality of the moduli is a condition of equi-
librium with respect to exchange of energy, when such exchange is
made possible.

We find a differential equation relating to average values in the
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ensemble which is identical in form with the fundamental differen-
tial equation of thermodynamics, the average index of probability
of phase, with change of sign, corresponding to entropy, and the
modulus to temperature.

For the average square of the anomalies of the energy, we find
an expression which vanishes in comparison with the square of the
average energy, when the number of degrees of freedom is indefi-
nitely increased. An ensemble of systems in which the number of
degrees of freedom is of the same order of magnitude as the number
of molecules in the bodies with which we experiment, if distributed
canonically, would therefore appear to human observation as an en-
semble of systems in which all have the same energy.

We meet with other quantities, in the development of the sub-
ject, which, when the number of degrees of freedom is very great,
coincide sensibly with the modulus, and with the average index of
probability, taken negatively, in a canonical ensemble, and which,
therefore, may also be regarded as corresponding to temperature
and entropy. The correspondence is however imperfect, when the
number of degrees of freedom is not very great, and there is nothing
to recommend these quantities except that in definition they may be
regarded as more simple than those which have been mentioned. In
Chapter XIV, this subject of thermodynamic analogies is discussed
somewhat at length.

Finally, in Chapter XV, we consider the modification of the pre-
ceding results which is necessary when we consider systems com-
posed of a number of entirely similar particles, or, it may be, of a
number of particles of several kinds, all of each kind being entirely
similar to each other, and when one of the variations to be con-
sidered is that of the numbers of the particles of the various kinds
which are contained in a system. This supposition would naturally
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have been introduced earlier, if our object had been simply the ex-
pression of the laws of nature. It seemed desirable, however, to
separate sharply the purely thermodynamic laws from those special
modifications which belong rather to the theory of the properties of
matter.

J. W. G.

New Haven, December, 1901.
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ELEMENTARY PRINCIPLES IN

STATISTICAL MECHANICS

I.

GENERAL NOTIONS. THE PRINCIPLE OF CONSERVATION
OF EXTENSION-IN-PHASE.

We shall use Hamilton’s form of the equations of motion for a sys-
tem of n degrees of freedom, writing q1, . . . qn for the (generalized)
coördinates, q̇1, . . . q̇n for the (generalized) velocities, and

F1 dq1 + F2 dq2 + · · ·+ Fn dqn (1)

for the moment of the forces. We shall call the quantities F1, . . .Fn
the (generalized) forces, and the quantities p1, . . . pn, defined by the
equations

p1 =
dεp
dq̇1

, p2 =
dεp
dq̇2

, etc., (2)

where εp denotes the kinetic energy of the system, the (generalized)
momenta. The kinetic energy is here regarded as a function of the
velocities and coördinates. We shall usually regard it as a function
of the momenta and coördinates,∗ and on this account we denote
it by εp. This will not prevent us from occasionally using formulae
like (2), where it is sufficiently evident the kinetic energy is regarded

∗The use of the momenta instead of the velocities as independent variables
is the characteristic of Hamilton’s method which gives his equations of motion
their remarkable degree of simplicity. We shall find that the fundamental no-
tions of statistical mechanics are most easily defined, and are expressed in the
most simple form, when the momenta with the coördinates are used to describe
the state of a system.
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as function of the q̇’s and q’s. But in expressions like dεp/dq1, where
the denominator does not determine the question, the kinetic energy
is always to be treated in the differentiation as function of the p’s
and q’s.

We have then

q̇1 =
dεp
dp1

, ṗ1 = −dεp
dq1

+ F1, etc. (3)

These equations will hold for any forces whatever. If the forces
are conservative, in other words, if the expression (1) is an exact
differential, we may set

F1 = −dεq
dq1

, F2 = −dεq
dq2

, etc., (4)

where εq is a function of the coördinates which we shall call the
potential energy of the system. If we write ε for the total energy,
we shall have

ε = εp + εq, (5)

and equations (3) may be written

q̇1 =
dε

dp1

, ṗ1 = − dε

dq1

, etc. (6)

The potential energy (εq) may depend on other variables beside
the coördinates q1, . . . qn. We shall often suppose it to depend in
part on coördinates of external bodies, which we shall denote by a1,
a2, etc. We shall then have for the complete value of the differential
of the potential energy∗

dεq = −F1 dq1 − · · · − Fn dqn − A1 da1 − A2 da2 − etc., (7)

∗It will be observed, that although we call εq the potential energy of the
system which we are considering, it is really so defined as to include that energy
which might be described as mutual to that system and external bodies.
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where A1, A2, etc., represent forces (in the generalized sense) ex-
erted by the system on external bodies. For the total energy (ε) we
shall have

dε = q̇1 dp1 + · · ·+ q̇n dpn − ṗ1 dq1 − · · ·
− ṗn dqn − A1 da1 − A2 da2 − etc., (8)

It will be observed that the kinetic energy (εp) in the most gen-
eral case is a quadratic function of the p’s (or q̇’s) involving also
the q’s but not the a’s; that the potential energy, when it exists, is
function of the q’s and a’s; and that the total energy, when it exists,
is function of the p’s (or q̇’s), the q’s, and the a’s. In expressions
like dε/dq1, the p’s, and not the q̇’s, are to be taken as independent
variables, as has already been stated with respect to the kinetic
energy.

Let us imagine a great number of independent systems, identi-
cal in nature, but differing in phase, that is, in their condition with
respect to configuration and velocity. The forces are supposed to
be determined for every system by the same law, being functions
of the coördinates of the system q1, . . . qn, either alone or with the
coördinates a1, a2, etc. of certain external bodies. It is not nec-
essary that they should be derivable from a force-function. The
external coördinates a1, a2, etc. may vary with the time, but at any
given time have fixed values. In this they differ from the internal
coördinates q1, . . . qn, which at the same time have different values
in the different systems considered.

Let us especially consider the number of systems which at a given
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instant fall within specified limits of phase, viz., those for which

p′1 < p1 < p′′1,

p′2 < p2 < p′′2,

· · · · · · · · ·
p′n < pn < p′′n,

q′1 < q1 < q′′1 ,

q′2 < q2 < q′′2 ,

· · · · · · · · ·
q′n < qn < q′′n,

 (9)

the accented letters denoting constants. We shall suppose the differ-
ences p′′1 − p′1, q′′1 − q′1, etc. to be infinitesimal, and that the systems
are distributed in phase in some continuous manner,∗ so that the
number having phases within the limits specified may be represented
by

D(p′′1 − p′1) · · · (p′′n − p′n)(q′′1 − q′1) · · · (q′′n − q′n), (10)

or more briefly by

Ddp1 · · · dpn dq1 · · · dqn, (11)

where D is a function of the p’s and q’s and in general of t also, for
as time goes on, and the individual systems change their phases, the
distribution of the ensemble in phase will in general vary. In special
cases, the distribution in phase will remain unchanged. These are
cases of statistical equilibrium.

If we regard all possible phases as forming a sort of extension of
2n dimensions, we may regard the product of differentials in (11)

∗In strictness, a finite number of systems cannot be distributed continu-
ously in phase. But by increasing indefinitely the number of systems, we may
approximate to a continuous law of distribution, such as is here described. To
avoid tedious circumlocution, language like the above may be allowed, although
wanting in precision of expression, when the sense in which it is to be taken
appears sufficiently clear.
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as expressing an element of this extension, and D as expressing the
density of the systems in that element. We shall call the product

dp1 · · · dpn dq1 · · · dqn (12)

an element of extension-in-phase, and D the density-in-phase of the
systems.

It is evident that the changes which take place in the density of
the systems in any given element of extension-in-phase will depend
on the dynamical nature of the systems and their distribution in
phase at the time considered.

In the case of conservative systems, with which we shall be
principally concerned, their dynamical nature is completely deter-
mined by the function which expresses the energy (ε) in terms of the
p’s, q’s, and a’s (a function supposed identical for all the systems);
in the more general case which we are considering, the dynamical
nature of the systems is determined by the functions which express
the kinetic energy (εp) in terms of the p’s and q’s, and the forces
in terms of the q’s and a’s. The distribution in phase is expressed
for the time considered by D as function of the p’s and q’s. To find
the value of dD/dt for the specified element of extension-in-phase,
we observe that the number of systems within the limits can only
be varied by systems passing the limits, which may take place in
4n different ways, viz., by the p1 of a system passing the limit p′1,
or the limit p′′1, or by the q1 of a system passing the limit q′1 or the
limit q′′1 , etc. Let us consider these cases separately.

In the first place, let us consider the number of systems which
in the time dt pass into or out of the specified element by p1 passing
the limit p′1. It will be convenient, and it is evidently allowable, to
suppose dt so small that the quantities ṗ1 dt, q̇1 dt, etc., which rep-
resent the increments of p1, q1, etc., in the time dt shall be infinitely
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small in comparison with the infinitesimal differences p′′1−p′1, q′′1−q′1,
etc., which determine the magnitude of the element of extension-in-
phase. The systems for which p1 passes the limit p′1 in the interval dt
are those for which at the commencement of this interval the value
of p1 lies between p′1 and p′1 − ṗ1 dt, as is evident if we consider
separately the cases in which p1 is positive and negative. Those
systems for which p1 lies between these limits, and the other p’s
and q’s between the limits specified in (9), will therefore pass into
or out of the element considered according as ṗ1 is positive or neg-
ative, unless indeed they also pass some other limit specified in (9)
during the same interval of time. But the number which pass any
two of these limits will be represented by an expression containing
the square of dt as a factor, and is evidently negligible, when dt is
sufficiently small, compared with the number which we are seeking
to evaluate, and which (with neglect of terms containing dt2) may
be found by substituting ṗ1 dt for p′′1 − p′1 in (10) or for dp1 in (11).

The expression

D ṗ1 dt dp2 · · · dpn dq1 · · · dqn (13)

will therefore represent, according as it is positive or negative, the
increase or decrease of the number of systems within the given limits
which is due to systems passing the limit p′1. A similar expression,
in which however D and ṗ will have slightly different values (being
determined for p′′1 instead of p′1), will represent the decrease or in-
crease of the number of systems due to the passing of the limit p′′1.
The difference of the two expressions, or

d(Dṗ1)

dp1

dp1 · · · dpn dq1 · · · dqn dt (14)

will represent algebraically the decrease of the number of systems
within the limits due to systems passing the limits p′1 and p′′1.
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The decrease in the number of systems within the limits due to
systems passing the limits q′1 and q′′1 may be found in the same way.
This will give(

d(Dṗ1)

dp1

+
d(Dq̇1)

dq1

)
dp1 · · · dpn dq1 · · · dqn dt (15)

for the decrease due to passing the four limits p′1, p′′1, q′1, q′′1 . But
since the equations of motion (3) give

dṗ1

dp1

+
dq̇1

dq1

= 0, (16)

the expression reduces to(
dD

dp1

ṗ1 +
dD

dq1

q̇1

)
dp1 · · · dpn dq1 · · · dqn dt. (17)

If we prefix
∑

to denote summation relative to the suffixes
1, . . .n, we get the total decrease in the number of systems within
the limits in the time dt. That is,∑(

dD

dp1

ṗ1 +
dD

dq1

q̇1

)
dp1 · · · dpn dq1 · · · dqn dt

= −dD dp1 · · · dpn dq1 · · · dqn, (18)

or (
dD

dt

)
p,q

= −
∑(

dD

dp1

ṗ1 +
dD

dq1

q̇1

)
, (19)

where the suffix applied to the differential coefficient indicates that
the p’s and q’s are to be regarded as constant in the differentiation.
The condition of statistical equilibrium is therefore∑(

dD

dp1

ṗ1 +
dD

dq1

q̇1

)
= 0. (20)
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If at any instant this condition is fulfilled for all values of the p’s
and q’s, (dD/dt)p,q vanishes, and therefore the condition will con-
tinue to hold, and the distribution in phase will be permanent, so
long as the external coördinates remain constant. But the statis-
tical equilibrium would in general be disturbed by a change in the
values of the external coördinates, which would alter the values of
the ṗ’s as determined by equations (3), and thus disturb the relation
expressed in the last equation.

If we write equation (19) in the form(
dD

dt

)
p,q

dt+
∑(

dD

dp1

ṗ1 dt+
dD

dq1

q̇1 dt

)
= 0, (21)

it will be seen to express a theorem of remarkable simplicity. Since
D is a function of t, p1, . . . pn, q1, . . . qn, its complete differential
will consist of parts due to the variations of all these quantities.
Now the first term of the equation represents the increment of D
due to an increment of t (with constant values of the p’s and q’s),
and the rest of the first member represents the increments of D
due to increments of the p’s and q’s, expressed by ṗ1 dt, q̇1 dt, etc.
But these are precisely the increments which the p’s and q’s receive
in the movement of a system in the time dt. The whole expression
represents the total increment ofD for the varying phase of a moving
system. We have therefore the theorem:—

In an ensemble of mechanical systems identical in nature and
subject to forces determined by identical laws, but distributed in
phase in any continuous manner, the density-in-phase is constant
in time for the varying phases of a moving system; provided, that
the forces of a system are functions of its coördinates, either alone
or with the time.∗

∗The condition that the forces F1, . . .Fn are functions of q1, . . . qn and
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This may be called the principle of conservation of density-in-
phase. It may also be written(

dD

dt

)
a,...h

= 0, (22)

where a, . . .h represent the arbitrary constants of the integral equa-
tions of motion, and are suffixed to the differential coefficient to
indicate that they are to be regarded as constant in the differenti-
ation.

We may give to this principle a slightly different expression. Let
us call the value of the integral∫

· · ·
∫
dp1 · · · dpn dq1 · · · dqn (23)

taken within any limits the extension-in-phase within those limits.
When the phases bounding an extension-in-phase vary in the

course of time according to the dynamical laws of a system subject
to forces which are functions of the coördinates either alone or with
the time, the value of the extension-in-phase thus bounded remains
constant. In this form the principle may be called the principle
of conservation of extension-in-phase. In some respects this may
be regarded as the most simple statement of the principle, since it
contains no explicit reference to an ensemble of systems.

Since any extension-in-phase may be divided into infinitesimal
portions, it is only necessary to prove the principle for an infinitely

a1, a2, etc., which last are functions of the time, is analytically equivalent to
the condition that F1, . . .Fn are functions of q1, . . . qn and the time. Explicit
mention of the external coördinates, a1, a2, etc., has been made in the pre-
ceding pages, because our purpose will require us hereafter to consider these
coördinates and the connected forces, A1, A2, etc., which represent the action
of the systems on external bodies.
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small extension. The number of systems of an ensemble which fall
within the extension will be represented by the integral∫

· · ·
∫
Ddp1 · · · dpn dq1 · · · dqn.

If the extension is infinitely small, we may regard D as constant in
the extension and write

D

∫
· · ·
∫
dp1 · · · dpn dq1 · · · dqn

for the number of systems. The value of this expression must be
constant in time, since no systems are supposed to be created or
destroyed, and none can pass the limits, because the motion of the
limits is identical with that of the systems. But we have seen that
D is constant in time, and therefore the integral∫

· · ·
∫
dp1 · · · dpn dq1 · · · dqn,

which we have called the extension-in-phase, is also constant in
time.∗

Since the system of coördinates employed in the foregoing dis-
cussion is entirely arbitrary, the values of the coördinates relating

∗If we regard a phase as represented by a point in space of 2n dimensions, the
changes which take place in the course of time in our ensemble of systems will
be represented by a current in such space. This current will be steady so long as
the external coördinates are not varied. In any case the current will satisfy a law
which in its various expressions is analogous to the hydrodynamic law which
may be expressed by the phrases conservation of volumes or conservation of
density about a moving point, or by the equation

dẋ

dx
+
dẏ

dy
+
dż

dz
= 0.
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to any configuration and its immediate vicinity do not impose any
restriction upon the values relating to other configurations. The
fact that the quantity which we have called density-in-phase is con-
stant in time for any given system, implies therefore that its value is
independent of the coördinates which are used in its evaluation. For
let the density-in-phase as evaluated for the same time and phase
by one system of coördinates be D′1, and by another system D′2.
A system which at that time has that phase will at another time
have another phase. Let the density as calculated for this second
time and phase by a third system of coördinates be D′′3 . Now we
may imagine a system of coördinates which at and near the first
configuration will coincide with the first system of coördinates, and
at and near the second configuration will coincide with the third
system of coördinates. This will give D′1 = D′′3 . Again we may
imagine a system of coördinates which at and near the first con-
figuration will coincide with the second system of coördinates, and
at and near the second configuration will coincide with the third
system of coördinates. This will give D′2 = D′′3 . We have therefore
D′1 = D′2.

It follows, or it may be proved in the same way, that the value of
an extension-in-phase is independent of the system of coördinates
which is used in its evaluation. This may easily be verified directly.

The analogue in statistical mechanics of this equation, viz.,

dṗ1

dp1
+
dq̇1

dq1
+
dṗ2

dp2
+
dq̇2

dq2
+ etc. = 0,

may be derived directly from equations (3) or (6), and may suggest such the-
orems as have been enunciated, if indeed it is not regarded as making them
intuitively evident. The somewhat lengthy demonstrations given above will at
least serve to give precision to the notions involved, and familiarity with their
use.
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If q1, . . . qn, Q1, . . .Qn are two systems of coördinates, and p1, . . . pn,
P1, . . .Pn the corresponding momenta, we have to prove that∫
· · ·
∫
dp1 · · · dpn dq1 · · · dqn =

∫
· · ·
∫
dP1 · · · dPn dQ1 · · · dQn,

(24)
when the multiple integrals are taken within limits consisting of the
same phases. And this will be evident from the principle on which
we change the variables in a multiple integral, if we prove that

d(P1, . . . Pn, Q1, . . . Qn)

d(p1, . . . pn, q1, . . . qn)
= 1, (25)

where the first member of the equation represents a Jacobian or
functional determinant. Since all its elements of the form dQ/dp
are equal to zero, the determinant reduces to a product of two, and
we have to prove that

d(P1, . . . Pn)

d(p1, . . . pn)

d(Q1, . . . Qn)

d(q1, . . . qn)
= 1. (26)

We may transform any element of the first of these determinants
as follows. By equations (2) and (3), and in view of the fact that
the Q̇’s are linear functions of the q̇’s and therefore of the p’s, with
coefficients involving the q’s, so that a differential coefficient of the
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form dQ̇r/dpy is function of the q’s alone, we get∗

dPx
dpy

=
d

dpy

dεp

dQ̇x

=
r=n∑
r=1

(
d2εp

dQ̇r dQ̇x

dQ̇r

dpy

)

=
d

dQ̇x

r=n∑
r=1

(
dεp

dQ̇r

dQ̇r

dpy

)
=

d

dQ̇x

dεp
dpy

=
dq̇y

dQ̇x

. (27)

But since

q̇y =
r=n∑
r=1

(
dqy
dQr

Q̇r

)
,

dq̇y

dQ̇x

=
dqy
dQx

. (28)

Therefore,

d(P1, . . . Pn)

d(p1, . . . pn)
=

d(q̇1, . . . q̇n)

d(Q̇1, . . . Q̇n)
=

d(q1, . . . qn)

d(Q1, . . . Qn)
. (29)

The equation to be proved is thus reduced to

d(P1, . . . Pn)

d(p1, . . . pn)

d(Q1, . . . Qn)

d(q1, . . . qn)
= 1, (30)

∗The form of the equation

d

dpy

dεp

dQ̇x
=

d

dQ̇x

dεp
dpy

in (27) reminds us of the fundamental identity in the differential calculus relat-
ing to the order of differentiation with respect to independent variables. But
it will be observed that here the variables Q̇x and py are not independent and

that the proof depends on the linear relation between the Q̇’s and the p’s.



statistical mechanics 14

which is easily proved by the ordinary rule for the multiplication of
determinants.

The numerical value of an extension-in-phase will however de-
pend on the units in which we measure energy and time. For a
product of the form dp dq has the dimensions of energy multiplied
by time, as appears from equation (2), by which the momenta are
defined. Hence an extension-in-phase has the dimensions of the
nth power of the product of energy and time. In other words, it has
the dimensions of the nth power of action, as the term is used in
the ‘principle of Least Action.’

If we distinguish by accents the values of the momenta and
coördinates which belong to a time t′, the unaccented letters relating
to the time t, the principle of the conservation of extension-in-phase
may be written∫
· · ·
∫
dp1 · · · dpn dq1 · · · dqn =

∫
· · ·
∫
dp′1 · · · dp′n dq′1 · · · dq′n, (31)

or more briefly∫
· · ·
∫
dp1 · · · dqn =

∫
· · ·
∫
dp′1 · · · dq′n, (32)

the limiting phases being those which belong to the same systems
at the times t and t′ respectively. But we have identically∫

· · ·
∫
dp1 · · · dqn =

∫
· · ·
∫
d(p1, . . . qn)

d(p′1, . . . q
′
n)
dp′1 · · · dq′n

for such limits. The principle of conservation of extension-in-phase
may therefore be expressed in the form

d(p1, . . . qn)

d(p′1, . . . q
′
n)

= 1. (33)
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This equation is easily proved directly. For we have identically

d(p1, . . . qn)

d(p′1, . . . q
′
n)

=
d(p1, . . . qn)

d(p′′1, . . . q
′′
n)

d(p′′1, . . . q
′′
n)

d(p′1, . . . q
′
n)
,

where the double accents distinguish the values of the momenta
and coördinates for a time t′′. If we vary t, while t′ and t′′ remain
constant, we have

d

dt

d(p1, . . . qn)

d(p′1, . . . q
′
n)

=
d(p′′1, . . . q

′′
n)

d(p′1, . . . q
′
n)

d

dt

d(p1, . . . qn)

d(p′′1, . . . q
′′
n)
. (34)

Now since the time t′′ is entirely arbitrary, nothing prevents us
from making t′′ identical with t at the moment considered. Then
the determinant

d(p1, . . . qn)

d(p′′1, . . . q
′′
n)

will have unity for each of the elements on the principal diagonal,
and zero for all the other elements. Since every term of the determi-
nant except the product of the elements on the principal diagonal
will have two zero factors, the differential of the determinant will
reduce to that of the product of these elements, i.e., to the sum of
the differentials of these elements. This gives the equation

d

dt

d(p1, . . . qn)

d(p′′1, . . . q
′′
n)

=
dṗ1

dp′′1
+ · · ·+ dṗn

dp′′n
+
dq̇1

dq′′1
+ · · ·+ dq̇n

dq′′n
.

Now since t = t′′, the double accents in the second member of this
equation may evidently be neglected. This will give, in virtue of
such relations as (16),

d

dt

d(p1, . . . qn)

d(p′′1, . . . q
′′
n)

= 0,
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which substituted in (34) will give

d

dt

d(p1, . . . qn)

d(p′1, . . . q
′
n)

= 0.

The determinant in this equation is therefore a constant, the value
of which may be determined at the instant when t = t′, when it is
evidently unity. Equation (33) is therefore demonstrated.

Again, if we write a, . . .h for a system of 2n arbitrary constants
of the integral equations of motion, p1, q1, etc. will be functions of
a, . . .h, and t, and we may express an extension-in-phase in the
form ∫

· · ·
∫
d(p1, . . . qn)

d(a, . . . , h)
da · · · dh. (35)

If we suppose the limits specified by values of a, . . .h, a system
initially at the limits will remain at the limits. The principle of
conservation of extension-in-phase requires that an extension thus
bounded shall have a constant value. This requires that the de-
terminant under the integral sign shall be constant, which may be
written

d

dt

d(p1, . . . qn)

d(a, . . . , h)
= 0. (36)

This equation, which may be regarded as expressing the principle
of conservation of extension-in-phase, may be derived directly from
the identity

d(p1, . . . qn)

d(a, . . . , h)
=
d(p1, . . . qn)

d(p′1, . . . q
′
n)

d(p′1, . . . q
′
n)

d(a, . . . , h)

in connection with equation (33).
Since the coördinates and momenta are functions of a, . . .h,

and t, the determinant in (36) must be a function of the same
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variables, and since it does not vary with the time, it must be a
function of a, . . .h alone. We have therefore

d(p1, . . . qn)

d(a, . . . , h)
= func.(a, . . . h). (37)

It is the relative numbers of systems which fall within different
limits, rather than the absolute numbers, with which we are most
concerned. It is indeed only with regard to relative numbers that
such discussions as the preceding will apply with literal precision,
since the nature of our reasoning implies that the number of systems
in the smallest element of space which we consider is very great.
This is evidently inconsistent with a finite value of the total number
of systems, or of the density-in-phase. Now if the value of D is
infinite, we cannot speak of any definite number of systems within
any finite limits, since all such numbers are infinite. But the ratios
of these infinite numbers may be perfectly definite. If we write N
for the total number of systems, and set

P =
D

N
, (38)

P may remain finite, when N and D become infinite. The integral∫
· · ·
∫
P dp1 . . . dqn (39)

taken within any given limits, will evidently express the ratio of the
number of systems falling within those limits to the whole number
of systems. This is the same thing as the probability that an un-
specified system of the ensemble (i.e. one of which we only know
that it belongs to the ensemble) will lie within the given limits. The
product

P dp1 . . . dqn (40)
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expresses the probability that an unspecified system of the ensemble
will be found in the element of extension-in-phase dp1 . . . dqn. We
shall call P the coefficient of probability of the phase considered. Its
natural logarithm we shall call the index of probability of the phase,
and denote it by the letter η.

If we substitute NP and Neη for D in equation (19), we get(
dP

dt

)
p,q

= −
∑(

dP

dp1

ṗ1 +
dP

dq1

q̇1

)
, (41)

and (
dη

dt

)
p,q

= −
∑(

dη

dp1

ṗ1 +
dη

dq1

q̇1

)
. (42)

The condition of statistical equilibrium may be expressed by equat-
ing to zero the second member of either of these equations.

The same substitutions in (22) give(
dP

dt

)
a,...h

= 0, (43)

and (
dη

dt

)
a,...h

= 0. (44)

That is, the values of P and η, like those of D, are constant in
time for moving systems of the ensemble. From this point of view,
the principle which otherwise regarded has been called the principle
of conservation of density-in-phase or conservation of extension-in-
phase, may be called the principle of conservation of the coefficient
(or index) of probability of a phase varying according to dynamical
laws, or more briefly, the principle of conservation of probability
of phase. It is subject to the limitation that the forces must be
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functions of the coördinates of the system either alone or with the
time.

The application of this principle is not limited to cases in which
there is a formal and explicit reference to an ensemble of systems.
Yet the conception of such an ensemble may serve to give precision
to notions of probability. It is in fact customary in the discussion
of probabilities to describe anything which is imperfectly known as
something taken at random from a great number of things which
are completely described. But if we prefer to avoid any reference to
an ensemble of systems, we may observe that the probability that
the phase of a system falls within certain limits at a certain time, is
equal to the probability that at some other time the phase will fall
within the limits formed by phases corresponding to the first. For
either occurrence necessitates the other. That is, if we write P ′ for
the coefficient of probability of the phase p′1, . . . q′n at the time t′,
and P ′′ for that of the phase p′′1, . . . q′′n at the time t′′,∫

· · ·
∫
P ′ dp′1 · · · dq′n =

∫
· · ·
∫
P ′′ dp′′1 · · · dq′′n, (45)

where the limits in the two cases are formed by corresponding
phases. When the integrations cover infinitely small variations of
the momenta and coördinates, we may regard P ′ and P ′′ as constant
in the integrations and write

P ′
∫
· · ·
∫
dp′1 · · · dq′n = P ′′

∫
· · ·
∫
dp′′1 · · · dq′′n.

Now the principle of the conservation of extension-in-phase, which
has been proved (viz., in the second demonstration given above)
independently of any reference to an ensemble of systems, requires
that the values of the multiple integrals in this equation shall be
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equal. This gives
P ′′ = P ′.

With reference to an important class of cases this principle may
be enunciated as follows.

When the differential equations of motion are exactly known,
but the constants of the integral equations imperfectly determined,
the coefficient of probability of any phase at any time is equal to
the coefficient of probability of the corresponding phase at any other
time. By corresponding phases are meant those which are calculated
for different times from the same values of the arbitrary constants
of the integral equations.

Since the sum of the probabilities of all possible cases is neces-
sarily unity, it is evident that we must have∫

all· · ·
phases

∫
P dp1 · · · dqn = 1, (46)

where the integration extends over all phases. This is indeed only
a different form of the equation

N =

∫
all· · ·

phases

∫
Ddp1 · · · dqn,

which we may regard as defining N .
The values of the coefficient and index of probability of phase,

like that of the density-in-phase, are independent of the system of
coördinates which is employed to express the distribution in phase
of a given ensemble.

In dimensions, the coefficient of probability is the reciprocal of
an extension-in-phase, that is, the reciprocal of the nth power of the
product of time and energy. The index of probability is therefore
affected by an additive constant when we change our units of time
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and energy. If the unit of time is multiplied by ct and the unit
of energy is multiplied by cε, all indices of probability relating to
systems of n degrees of freedom will be increased by the addition of

n log ct + n log cε. (47)



II.

APPLICATION OF THE PRINCIPLE OF CONSERVATION OF
EXTENSION-IN-PHASE TO THE THEORY OF ERRORS.

Let us now proceed to combine the principle which has been
demonstrated in the preceding chapter and which in its different
applications and regarded from different points of view has been
variously designated as the conservation of density-in-phase, or of
extension-in-phase, or of probability of phase, with those approxi-
mate relations which are generally used in the ‘theory of errors.’

We suppose that the differential equations of the motion of a
system are exactly known, but that the constants of the integral
equations are only approximately determined. It is evident that the
probability that the momenta and coördinates at the time t′ fall
between the limits p′1 and p′1 + dp′1, q′1 and q′1 + dq′1, etc., may be
expressed by the formula

eη
′
dp′1 . . . dq

′
n, (48)

where η′ (the index of probability for the phase in question) is a
function of the coördinates and momenta and of the time.

Let Q′1, P ′1, etc. be the values of the coördinates and momenta
which give the maximum value to η′, and let the general value of η′

be developed by Taylor’s theorem according to ascending powers
and products of the differences p′1−P ′1, q′1−Q′1, etc., and let us sup-
pose that we have a sufficient approximation without going beyond
terms of the second degree in these differences. We may therefore
set

η′ = c− F ′, (49)

where c is independent of the differences p′1−P ′1, q′1−Q′1, etc., and
F ′ is a homogeneous quadratic function of these differences. The
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terms of the first degree vanish in virtue of the maximum condition,
which also requires that F ′ must have a positive value except when
all the differences mentioned vanish. If we set

C = ec, (50)

we may write for the probability that the phase lies within the limits
considered

Ce−F
′
dp′1 . . . dq

′
n. (51)

C is evidently the maximum value of the coefficient of probability
at the time considered.

In regard to the degree of approximation represented by these
formulae, it is to be observed that we suppose, as is usual in the
‘theory of errors,’ that the determination (explicit or implicit) of the
constants of motion is of such precision that the coefficient of prob-
ability eη

′
or Ce−F

′
is practically zero except for very small values

of the differences p′1−P ′1, q′1−Q′1, etc. For very small values of these
differences the approximation is evidently in general sufficient, for
larger values of these differences the value of Ce−F

′
will be sensibly

zero, as it should be, and in this sense the formula will represent
the facts.

We shall suppose that the forces to which the system is subject
are functions of the coördinates either alone or with the time. The
principle of conservation of probability of phase will therefore apply,
which requires that at any other time (t′′) the maximum value of
the coefficient of probability shall be the same as at the time t′, and
that the phase (P ′′1 , Q′′1, etc.) which has this greatest probability-
coefficient, shall be that which corresponds to the phase (P ′1, Q′1,
etc.), i.e., which is calculated from the same values of the constants
of the integral equations of motion.
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We may therefore write for the probability that the phase at the
time t′′ falls within the limits p′′1 and p′′1 + dp′′1, q′′1 and q′′1 + dq′′1 , etc.,

Ce−F
′
dp′′1 . . . dq

′′
n, (52)

where C represents the same value as in the preceding formula, viz.,
the constant value of the maximum coefficient of probability, and
F ′′ is a quadratic function of the differences p′′1 − P ′′1 , q1 −Q′′1, etc.,
the phase (P ′′1 , Q′′1, etc.) being that which at the time t′′ corresponds
to the phase (P ′1, Q′1, etc.) at the time t′.

Now we have necessarily∫
· · ·
∫
Ce−F

′
dp′1 . . . dq

′
n =

∫
· · ·
∫
Ce−F

′′
dp′′1 . . . dq

′′
n = 1, (53)

when the integration is extended over all possible phases. It will
be allowable to set ±∞ for the limits of all the coördinates and
momenta, not because these values represent the actual limits of
possible phases, but because the portions of the integrals lying out-
side of the limits of all possible phases will have sensibly the value
zero. With ±∞ for limits, the equation gives

Cπn√
f ′

=
Cπn√
f ′′

= 1, (54)

where f ′ is the discriminant∗ of F ′, and f ′′ that of F ′′. This discrim-
inant is therefore constant in time, and like C an absolute invariant
in respect to the system of coördinates which may be employed. In
dimensions, like C2, it is the reciprocal of the 2nth power of the
product of energy and time.

∗This term is used to denote the determinant having for elements on the
principal diagonal the coefficients of the squares in the quadratic function F ′,
and for its other elements the halves of the coefficients of the products in F ′.
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Let us see precisely how the functions F ′′ and F ′ are related. The
principle of the conservation of the probability-coefficient requires
that any values of the coördinates and momenta at the time t′ shall
give the function F ′ the same value as the corresponding coördinates
and momenta at the time t′′ give to F ′′. Therefore F ′′ may be
derived from F ′ by substituting for p′1, . . . q′n their values in terms
of p′′1, . . . q′′n. Now we have approximately

p′1 − P ′1 =
dP ′1
dP ′′1

(p′′1 − P ′′1 ) + · · ·+ dP ′1
dQ′′n

(q′′n −Q′′n),

. . . . . .

q′n −Q′n =
dQ′n
dP ′′1

(p′′1 − P ′′1 ) + · · ·+ dQ′n
dQ′′n

(q′′n −Q′′n),


(55)

and as in F ′′ terms of higher degree than the second are to be ne-
glected, these equations may be considered accurate for the purpose
of the transformation required. Since by equation (33) the eliminant
of these equations has the value unity, the discriminant of F ′′ will be
equal to that of F ′, as has already appeared from the consideration
of the principle of conservation of probability of phase, which is, in
fact, essentially the same as that expressed by equation (33).

At the time t′, the phases satisfying the equation

F ′ = k, (56)

where k is any positive constant, have the probability-coefficient
Ce−k. At the time t′′, the corresponding phases satisfy the equation

F ′′ = k, (57)

and have the same probability-coefficient. So also the phases
within the limits given by one or the other of these equations
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are corresponding phases, and have probability-coefficients greater
than Ce−k, while phases without these limits have less probability-
coefficients. The probability that the phase at the time t′ falls
within the limits F ′′ = k is the same as the probability that it falls
within the limits F ′′ = k at the time t′′, since either event necessi-
tates the other. This probability may be evaluated as follows. We
may omit the accents, as we need only consider a single time. Let
us denote the extension-in-phase within the limits F = k by U ,
and the probability that the phase falls within these limits by R,
also the extension-in-phase within the limits F = 1 by U1. We have
then by definition

U =

∫ F=k

· · ·
∫
dp1 . . . dqn, (58)

R =

∫ F=k

· · ·
∫
Ce−F dp1 . . . dqn, (59)

U1 =

∫ F=1

· · ·
∫
dp1 . . . dqn. (60)

But since F is a homogeneous quadratic function of the differences

p1 − P1, p2 − P2, . . . , qn −Qn,

we have identically∫ F=k

· · ·
∫
d(p1 − P1) . . . d(qn −Qn)

=

∫ kF=k

· · ·
∫
kn d(p1 − P1) . . . d(qn −Qn)

= kn
∫ F=1

· · ·
∫
d(p1 − P1) . . . d(qn −Qn).
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That is
U = knU1, (61)

whence
dU = U1nk

n−1 dk. (62)

But if k varies, equations (58) and (59) give

dU =

∫ F=k+dk

F=k

· · ·
∫
dp1 . . . dqn, (63)

dR =

∫ F=k+dk

F=k

· · ·
∫
Ce−F dp1 . . . dqn. (64)

Since the factor Ce−F has the constant value Ce−k in the last
multiple integral, we have

dR = Ce−k dU = CU1ne
−kkn−1 dk, (65)

R = −CU1n!e−k
(

1 + k +
k2

2
+ · · ·+ kn−1

(n− 1)!

)
+ const. (66)

We may determine the constant of integration by the condition that
R vanishes with k. This gives

R = CU1n!− CU1n!e−k
(

1 + k +
k2

2
+ · · ·+ kn−1

(n− 1)!

)
. (67)

We may determine the value of the constant U1 by the condition
that R = 1 for k =∞. This gives CU1n! = 1, and

R = 1− e−k
(

1 + k +
k2

2
+ · · ·+ kn−1

(n− 1)!

)
, (68)

U =
kn

Cn!
. (69)
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It is worthy of notice that the form of these equations depends
only on the number of degrees of freedom of the system, being in
other respects independent of its dynamical nature, except that the
forces must be functions of the coördinates either alone or with the
time.

If we write
kE= 1

2

for the value of k which substituted in equation (68) will give R = 1
2
,

the phases determined by the equation

F = kE= 1
2

(70)

will have the following properties.
The probability that the phase falls within the limits formed by

these phases is greater than the probability that it falls within any
other limits enclosing an equal extension-in-phase. It is equal to the
probability that the phase falls without the same limits.

These properties are analogous to those which in the theory of
errors in the determination of a single quantity belong to values
expressed by A± a, when A is the most probable value, and a the
‘probable error.’



III.

APPLICATION OF THE PRINCIPLE OF CONSERVATION OF
EXTENSION-IN-PHASE TO THE INTEGRATION OF THE

DIFFERENTIAL EQUATIONS OF MOTION.∗

We have seen that the principle of conservation of extension-
in-phase may be expressed as a differential relation between the
coördinates and momenta and the arbitrary constants of the inte-
gral equations of motion. Now the integration of the differential
equations of motion consists in the determination of these constants
as functions of the coördinates and momenta with the time, and
the relation afforded by the principle of conservation of extension-
in-phase may assist us in this determination.

It will be convenient to have a notation which shall not distin-
guish between the coördinates and momenta. If we write r1, . . . r2n

for the coördinates and momenta, and a, . . .h as before for the ar-
bitrary constants, the principle of which we wish to avail ourselves,
and which is expressed by equation (37), may be written

d(r1, . . . r2n)

d(a, . . . h)
= func.(a, . . . h). (71)

Let us first consider the case in which the forces are determined
by the coördinates alone. Whether the forces are ‘conservative’
or not is immaterial. Since the differential equations of motion
do not contain the time (t) in the finite form, if we eliminate dt
from these equations, we obtain 2n− 1 equations in r1, . . . r2n and
their differentials, the integration of which will introduce 2n − 1

∗See Boltzmann: “Zusammenhang zwischen den Sätzen über das Verhalten
mehratomiger Gasmoleküle mit Jacobi’s Princip des letzten Multiplicators.”
Sitzb. der Wiener Akad., Bd. LXIII, Abth. II., S. 679, (1871).
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arbitrary constants which we shall call b, . . .h. If we can effect these
integrations, the remaining constant (a) will then be introduced in
the final integration, (viz., that of an equation containing dt,) and
will be added to or subtracted from t in the integral equation. Let
us have it subtracted from t. It is evident then that

dr1

da
= −ṙ1,

dr2

da
= −ṙ2, etc. (72)

Moreover, since b, . . .h and t − a are independent functions of
r1, . . . r2n, the latter variables are functions of the former. The
Jacobian in (71) is therefore function of b, . . .h, and t−a, and since
it does not vary with t it cannot vary with a. We have therefore
in the case considered, viz., where the forces are functions of the
coördinates alone,

d(r1, . . . r2n)

d(a, . . . h)
= func.(b, . . . h). (73)

Now let us suppose that of the first 2n− 1 integrations we have
accomplished all but one, determining 2n − 2 arbitrary constants
(say c, . . .h) as functions of r1, . . . r2n, leaving b as well as a to be
determined. Our 2n− 2 finite equations enable us to regard all the
variables r1, . . . r2n, and all functions of these variables as functions
of two of them, (say r1 and r2,) with the arbitrary constants c, . . .h.
To determine b, we have the following equations for constant values
of c, . . .h.

dr1 =
dr1

da
da+

dr1

db
db,

dr2 =
dr2

da
da+

dr2

db
db,
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whence

d(r1, r2)

d(a, b)
= −dr2

da
dr1 +

dr1

da
dr2. (74)

Now, by the ordinary formula for the change of variables,∫
· · ·
∫
d(r1, r2)

d(a, b)
da db dr3 . . . dr2n =

∫
· · ·
∫
dr1 . . . dr2n

=

∫
· · ·
∫
d(r1, . . . r2n)

d(a, . . . h)
da . . . dh

=

∫
· · ·
∫
d(r1, . . . r2n)

d(a, . . . h)

d(c, . . . h)

d(r3, . . . r2n)
da db dr3 . . . dr2n,

where the limits of the multiple integrals are formed by the same
phases. Hence

d(r1, r2)

d(a, b)
=
d(r1, . . . r2n)

d(a, . . . h)

d(c, . . . h)

d(r3, . . . r2n)
. (75)

With the aid of this equation, which is an identity, and (72), we
may write equation (74) in the form

d(r1, . . . r2n)

d(a, . . . h)

d(c, . . . h)

d(r3, . . . r2n)
db = ṙ2 dr1 − ṙ1 dr2. (76)

The separation of the variables is now easy. The differential
equations of motion give ṙ1 and ṙ2 in terms of r1, . . . r2n. The in-
tegral equations already obtained give c, . . .h and therefore the Ja-
cobian d(c, . . . h)/d(r3, . . . r2n), in terms of the same variables. But
in virtue of these same integral equations, we may regard functions



statistical mechanics 32

of r1, . . . r2n as functions of r1 and r2 with the constants c, . . .h. If
therefore we write the equation in the form

d(r1, . . . r2n)

d(a, . . . h)
db =

ṙ2

d(c, . . . h)

d(r3, . . . r2n)

dr1 −
ṙ1

d(c, . . . h)

d(r3, . . . r2n)

dr2, (77)

the coefficients of dr1 and dr2 may be regarded as known functions
of r1 and r2 with the constants c, . . .h. The coefficient of db is
by (73) a function of b, . . .h. It is not indeed a known function
of these quantities, but since c, . . .h are regarded as constant in
the equation, we know that the first member must represent the
differential of some function of b, . . .h, for which we may write b′.
We have thus

db′ =
ṙ2

d(c, . . . h)

d(r3, . . . r2n)

dr1 −
ṙ1

d(c, . . . h)

d(r3, . . . r2n)

dr2, (78)

which may be integrated by quadratures and gives b′′ as functions
of r1, r2, . . . c, . . .h, and thus as function of r1, . . . r2n.

This integration gives us the last of the arbitrary constants which
are functions of the coördinates and momenta without the time.
The final integration, which introduces the remaining constant (a),
is also a quadrature, since the equation to be integrated may be
expressed in the form

dt = F (r1) dr1.

Now, apart from any such considerations as have been adduced,
if we limit ourselves to the changes which take place in time, we
have identically

ṙ2 dr1 − ṙ1 dr2 = 0,
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and ṙ1 and ṙ2 are given in terms of r1, . . . r2n by the differential
equations of motion. When we have obtained 2n− 2 integral equa-
tions, we may regard ṙ2 and ṙ1 as known functions of r1 and r2. The
only remaining difficulty is in integrating this equation. If the case
is so simple as to present no difficulty, or if we have the skill or the
good fortune to perceive that the multiplier

1

d(c, . . . h)

d(r3, . . . r2n)

, (79)

or any other, will make the first member of the equation an exact
differential, we have no need of the rather lengthy considerations
which have been adduced. The utility of the principle of conser-
vation of extension-in-phase is that it supplies a ‘multiplier’ which
renders the equation integrable, and which it might be difficult or
impossible to find otherwise.

It will be observed that the function represented by b′ is a partic-
ular case of that represented by b. The system of arbitrary constants
a, b′, c, . . .h has certain properties notable for simplicity. If we write
b′ for b in (77), and compare the result with (78), we get

d(r1, . . . r2n)

d(a, b′, c, . . . h)
= 1. (80)

Therefore the multiple integral∫
· · ·
∫
da db′ dc . . . dh (81)

taken within limits formed by phases regarded as contemporaneous
represents the extension-in-phase within those limits.
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The case is somewhat different when the forces are not deter-
mined by the coördinates alone, but are functions of the coördinates
with the time. All the arbitrary constants of the integral equations
must then be regarded in the general case as functions of r1, . . . r2n,
and t. We cannot use the principle of conservation of extension-
in-phase until we have made 2n − 1 integrations. Let us suppose
that the constants b, . . .h have been determined by integration in
terms of r1, . . . r2n, and t, leaving a single constant (a) to be thus
determined. Our 2n− 1 finite equations enable us to regard all the
variables r1, . . . r2n as functions of a single one, say r1.

For constant values of b, . . .h, we have

dr1 =
dr1

da
da+ ṙ1 dt. (82)

Now∫
· · ·
∫
dr1

da
da dr2 . . . dr2n =

∫
· · ·
∫
dr1 . . . dr2n

=

∫
· · ·
∫
d(r1, . . . r2n)

d(a, . . . h)
da . . . dh

=

∫
· · ·
∫
d(r1, . . . r2n)

d(a, . . . h)

d(b, . . . h)

d(r2, . . . r2n)
da dr2 . . . dr2n,

where the limits of the integrals are formed by the same phases. We
have therefore

dr1

da
=
d(r1, . . . r2n)

d(a, . . . h)

d(b, . . . h)

d(r2, . . . r2n)
, (83)

by which equation (82) may be reduced to the form

d(r1, . . . r2n)

d(a, . . . h)
da =

1

d(b, . . . h)

d(r2, . . . r2n)

dr1 −
ṙ1

d(b, . . . h)

d(r2, . . . r2n)

dt. (84)
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Now we know by (71) that the coefficient of da is a function
of a, . . .h. Therefore, as b, . . .h are regarded as constant in the
equation, the first number represents the differential of a function
of a, . . .h, which we may denote by a′. We have then

da′ =
1

d(b, . . . h)

d(r2, . . . r2n)

dr1 −
ṙ1

d(b, . . . h)

d(r2, . . . r2n)

dt, (85)

which may be integrated by quadratures. In this case we may say
that the principle of conservation of extension-in-phase has supplied
the ‘multiplier’

1

d(b, . . . h)

d(r2, . . . r2n)

dr1 (86)

for the integration of the equation

dr1 − ṙ1 dt = 0. (87)

The system of arbitrary constants a′, b, . . .h has evidently the
same properties which were noticed in regard to the system a,
b′, . . .h.



IV.

ON THE DISTRIBUTION IN PHASE CALLED CANONICAL,
IN WHICH THE INDEX OF PROBABILITY IS A LINEAR

FUNCTION OF THE ENERGY.

Let us now give our attention to the statistical equilibrium of en-
sembles of conservation systems, especially to those cases and prop-
erties which promise to throw light on the phenomena of thermo-
dynamics.

The condition of statistical equilibrium may be expressed in the
form∗ ∑(

dP

dp1

ṗ1 +
dP

dq1

q̇1

)
= 0, (88)

where P is the coefficient of probability, or the quotient of the
density-in-phase by the whole number of systems. To satisfy this
condition, it is necessary and sufficient that P should be a function
of the p’s and q’s (the momenta and coördinates) which does not
vary with the time in a moving system. In all cases which we are
now considering, the energy, or any function of the energy, is such
a function.

P = func.(ε)

will therefore satisfy the equation, as indeed appears identically if
we write it in the form∑(

dP

dp1

dε

dp1

− dP

dq1

dε

dq1

)
= 0.

∗See equations (20), (41), (42), also the paragraph following equation (20).
The positions of any external bodies which can affect the systems are here
supposed uniform for all the systems and constant in time.
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There are, however, other conditions to which P is subject,
which are not so much conditions of statistical equilibrium, as con-
ditions implicitly involved in the definition of the coefficient of prob-
ability, whether the case is one of equilibrium or not. These are:
that P should be single-valued, and neither negative nor imaginary
for any phase, and that expressed by equation (46), viz.,∫

all· · ·
phases

∫
P dp1 . . . dqn = 1. (89)

These considerations exclude

P = ε× constant,

as well as
P = constant,

as cases to be considered.
The distribution represented by

η = logP =
ψ − ε

Θ
, (90)

or

P = e
ψ−ε
Θ , (91)

where Θ and ψ are constants, and Θ positive, seems to represent the
most simple case conceivable, since it has the property that when
the system consists of parts with separate energies, the laws of the
distribution in phase of the separate parts are of the same nature,—
a property which enormously simplifies the discussion, and is the
foundation of extremely important relations to thermodynamics.
The case is not rendered less simple by the divisor Θ, (a quantity
of the same dimensions as ε,) but the reverse, since it makes the
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distribution independent of the units employed. The negative sign
of ε is required by (89), which determines also the value of ψ for
any given Θ, viz.,

e−
ψ
Θ =

∫
all· · ·

phases

∫
e−

ε
Θ dp1 . . . dqn. (92)

When an ensemble of systems is distributed in phase in the man-
ner described, i.e., when the index of probability is a linear func-
tion of the energy, we shall say that the ensemble is canonically
distributed, and shall call the divisor of the energy (Θ) the modulus
of distribution.

The fractional part of an ensemble canonically distributed which
lies within any given limits of phase is therefore represented by the
multiple integral ∫

· · ·
∫
e
ψ−ε
Θ dp1 . . . dqn (93)

taken within those limits. We may express the same thing by saying
that the multiple integral expresses the probability that an unspec-
ified system of the ensemble (i.e., one of which we only know that
it belongs to the ensemble) falls within the given limits.

Since the value of a multiple integral of the form (23) (which we
have called an extension-in-phase) bounded by any given phases is
independent of the system of coördinates by which it is evaluated,
the same must be true of the multiple integral in (92), as appears
at once if we divide up this integral into parts so small that the
exponential factor may be regarded as constant in each. The value
of ψ is therefore independent of the system of coördinates employed.

It is evident that ψ might be defined as the energy for which the
coefficient of probability of phase has the value unity. Since however
this coefficient has the dimensions of the inverse nth power of the



statistical mechanics 39

product of energy and time,∗ the energy represented by ψ is not
independent of the units of energy and time. But when these units
have been chosen, the definition of ψ will involve the same arbitrary
constant as ε, so that, while in any given case the numerical values
of ψ or ε will be entirely indefinite until the zero of energy has
also been fixed for the system considered, the difference ψ − ε will
represent a perfectly definite amount of energy, which is entirely
independent of the zero of energy which we may choose to adopt.

It is evident that the canonical distribution is entirely deter-
mined by the modulus (considered as a quantity of energy) and the
nature of the system considered, since when equation (92) is sat-
isfied the value of the multiple integral (93) is independent of the
units and of the coördinates employed, and of the zero chosen for
the energy of the system.

In treating of the canonical distribution, we shall always sup-
pose the multiple integral in equation (92) to have a finite value, as
otherwise the coefficient of probability vanishes, and the law of dis-
tribution becomes illusory. This will exclude certain cases, but not
such apparently, as will affect the value of our results with respect
to their bearing on thermodynamics. It will exclude, for instance,
cases in which the system or parts of it can be distributed in un-
limited space (or in a space which has limits, but is still infinite in
volume), while the energy remains beneath a finite limit. It also ex-
cludes many cases in which the energy can decrease without limit,
as when the system contains material points which attract one an-
other inversely as the squares of their distances. Cases of material
points attracting each other inversely as the distances would be ex-
cluded for some values of Θ, and not for others. The investigation of
such points is best left to the particular cases. For the purposes of a

∗See Chapter I, p. 20.
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general discussion, it is sufficient to call attention to the assumption
implicitly involved in the formula (92).∗

The modulus Θ has properties analogous to those of temperature
in thermodynamics. Let the system A be defined as one of an
ensemble of systems of m degrees of freedom distributed in phase
with a probability-coefficient

e
ψA−εA

Θ ,

and the system B as one of an ensemble of systems of n degrees of
freedom distributed in phase with a probability-coefficient

e
ψB−εB

Θ ,

which has the same modulus. Let q1, . . . qm, p1, . . . pm be the
coördinates and momenta of A, and qm+1, . . . qm+n, pm+1, . . . pm+n

those of B. Now we may regard the systems A and B as together
forming a system C, having m + n degrees of freedom, and the
coördinates and momenta q1, . . . qm+n, p1, . . . pm+n. The probabil-
ity that the phase of the system C, as thus defined, will fall within
the limits

dp1, . . . dpm+n, dq1, . . . dqm+n

is evidently the product of the probabilities that the systems A and
B will each fall within the specified limits, viz.,

e
ψA+ψB−εA−εB

Θ dp1 . . . dpm+n dq1 . . . dqm+n. (94)

∗It will be observed that similar limitations exist in thermodynamics. In
order that a mass of gas can be in thermodynamic equilibrium, it is necessary
that it be enclosed. There is no thermodynamic equilibrium of a (finite) mass of
gas in an infinite space. Again, that two attracting particles should be able to do
an infinite amount of work in passing from one configuration (which is regarded
as possible) to another, is a notion which, although perfectly intelligible in a
mathematical formula, is quite foreign to our ordinary conceptions of matter.



statistical mechanics 41

We may therefore regard C as an undetermined system of an en-
semble distributed with the probability-coefficient

e
ψA+ψB−(εA+εB)

Θ , (95)

an ensemble which might be defined as formed by combining each
system of the first ensemble with each of the second. But since
εA + εB is the energy of the whole system, and ψA and ψB are
constants, the probability-coefficient is of the general form which we
are considering, and the ensemble to which it relates is in statistical
equilibrium and is canonically distributed.

This result, however, so far as statistical equilibrium is con-
cerned, is rather nugatory, since conceiving of separate systems as
forming a single system does not create any interaction between
them, and if the systems combined belong to ensembles in statistical
equilibrium, to say that the ensemble formed by such combinations
as we have supposed is in statistical equilibrium, is only to repeat
the data in different words. Let us therefore suppose that in form-
ing the system C we add certain forces acting between A and B,
and having the force-function −εAB. The energy of the system C
is now εA + εB + εAB, and an ensemble of such systems distributed
with a density proportional to

e
−(εA+εB+εAB)

Θ (96)

would be in statistical equilibrium. Comparing this with the
probability-coefficient of C given above (95), we see that if we
suppose εAB (or rather the variable part of this term when we
consider all possible configurations of the systems A and B) to be
infinitely small, the actual distribution in phase of C will differ
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infinitely little from one of statistical equilibrium, which is equiva-
lent to saying that its distribution in phase will vary infinitely little
even in a time indefinitely prolonged.∗ The case would be entirely
different if A and B belonged to ensembles having different moduli,
say ΘA and ΘB. The probability-coefficient of C would then be

e
ψA−εA

ΘA
+
ψB−εB

ΘB , (97)

which is not approximately proportional to any expression of the
form (96).

Before proceeding farther in the investigation of the distribution
in phase which we have called canonical, it will be interesting to see
whether the properties with respect to statistical equilibrium which
have been described are peculiar to it, or whether other distributions
may have analogous properties.

Let η′ and η′′ be the indices of probability in two independent
ensembles which are each in statistical equilibrium, then η′+η′′ will
be the index in the ensemble obtained by combining each system
of the first ensemble with each system of the second. This third

∗It will be observed that the above condition relating to the forces which act
between the different systems is entirely analogous to that which must hold in
the corresponding case in thermodynamics. The most simple test of the equality
of temperature of two bodies is that they remain in equilibrium when brought
into thermal contact. Direct thermal contact implies molecular forces acting
between the bodies. Now the test will fail unless the energy of these forces can
be neglected in comparison with the other energies of the bodies. Thus, in the
case of energetic chemical action between the bodies, or when the number of
particles affected by the forces acting between the bodies is not negligible in
comparison with the whole number of particles (as when the bodies have the
form of exceedingly thin sheets), the contact of bodies of the same temperature
may produce considerable thermal disturbance, and thus fail to afford a reliable
criterion of the equality of temperature.
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ensemble will of course be in statistical equilibrium, and the function
of phase η′+η′′ will be a constant of motion. Now when infinitesimal
forces are added to the compound systems, if η′ + η′′ or a function
differing infinitesimally from this is still a constant of motion, it
must be on account of the nature of the forces added, or if their
action is not entirely specified, on account of conditions to which
they are subject. Thus, in the case already considered, η′ + η′′ is a
function of the energy of the compound system, and the infinitesimal
forces added are subject to the law of conservation of energy.

Another natural supposition in regard to the added forces is that
they should be such as not to affect the moments of momentum of
the compound system. To get a case in which moments of mo-
mentum of the compound system shall be constants of motion, we
may imagine material particles contained in two concentric spheri-
cal shells, being prevented from passing the surfaces bounding the
shells by repulsions acting always in lines passing through the com-
mon centre of the shells. Then, if there are no forces acting between
particles in different shells, the mass of particles in each shell will
have, besides its energy, the moments of momentum about three
axes through the centre as constants of motion.

Now let us imagine an ensemble formed by distributing in phase
the system of particles in one shell according to the index of prob-
ability

A− ε

Θ
+
ω1

Ω1

+
ω2

Ω2

+
ω3

Ω3

, (98)

where ε denotes the energy of the system, and ω1, ω2, ω3, its three
moments of momentum, and the other letters constants. In like
manner let us imagine a second ensemble formed by distributing
in phase the system of particles in the other shell according to the
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index

A′ − ε′

Θ
+
ω′1
Ω1

+
ω′2
Ω2

+
ω′3
Ω3

, (99)

where the letters have similar significations, and Θ, Ω1, Ω2, Ω3 the
same values as in the preceding formula. Each of the two ensembles
will evidently be in statistical equilibrium, and therefore also the
ensemble of compound systems obtained by combining each system
of the first ensemble with each of the second. In this third ensemble
the index of probability will be

A+ A′ − ε+ ε′

Θ
+
ω1 + ω′1

Ω1

+
ω2 + ω′2

Ω2

+
ω3 + ω′3

Ω3

, (100)

where the four numerators represent functions of phase which are
constants of motion for the compound systems.

Now if we add in each system of this third ensemble infinitesimal
conservative forces of attraction or repulsion between particles in
different shells, determined by the same law for all the systems, the
functions ω1 + ω′1, ω2 + ω′2, and ω3 + ω′3 will remain constants of
motion, and a function differing infinitely little from ε1 +ε′ will be a
constant of motion. It would therefore require only an infinitesimal
change in the distribution in phase of the ensemble of compound
systems to make it a case of statistical equilibrium. These properties
are entirely analogous to those of canonical ensembles.∗

∗It would not be possible to omit the term relating to energy in the above
indices, since without this term the condition expressed by equation (89) cannot
be satisfied.

The consideration of the above case of statistical equilibrium may be made the
foundation of the theory of the thermodynamic equilibrium of rotating bodies,—
a subject which has been treated by Maxwell in his memoir “On Boltzmann’s
theorem on the average distribution of energy in a system of material points.”
Cambr. Phil. Trans., vol. XII, p. 547, (1878).
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Again, if the relations between the forces and the coördinates
can be expressed by linear equations, there will be certain “normal”
types of vibration of which the actual motion may be regarded as
composed, and the whole energy may be divided into parts relating
separately to vibrations of these different types. These partial ener-
gies will be constants of motion, and if such a system is distributed
according to an index which is any function of the partial energies,
the ensemble will be in statistical equilibrium. Let the index be a
linear function of the partial energies, say

A− ε1
Θ1

− · · · − εn
Θn

. (101)

Let us suppose that we have also a second ensemble composed of
systems in which the forces are linear functions of the coördinates,
and distributed in phase according to an index which is a linear
function of the partial energies relating to the normal types of vi-
bration, say

A′ − ε′1
Θ′1
− · · · − ε′m

Θ′m
. (102)

Since the two ensembles are both in statistical equilibrium, the
ensemble formed by combining each system of the first with each
system of the second will also be in statistical equilibrium. Its
distribution in phase will be represented by the index

A+ A′ − ε1
Θ1

− · · · − εn
Θn

− ε′1
Θ′1
− · · · − ε′m

Θ′m
, (103)

and the partial energies represented by the numerators in the for-
mula will be constants of motion of the compound systems which
form this third ensemble.

Now if we add to these compound systems infinitesimal forces
acting between the component systems and subject to the same
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general law as those already existing, viz., that they are conserva-
tive and linear functions of the coördinates, there will still be n+m
types of normal vibration, and n + m partial energies which are
independent constants of motion. If all the original n + m normal
types of vibration have different periods, the new types of normal
vibration will differ infinitesimally from the old, and the new par-
tial energies, which are constants of motion, will be nearly the same
functions of phase as the old. Therefore the distribution in phase
of the ensemble of compound systems after the addition of the sup-
posed infinitesimal forces will differ infinitesimally from one which
would be in statistical equilibrium.

The case is not so simple when some of the normal types of mo-
tion have the same periods. In this case the addition of infinitesimal
forces may completely change the normal types of motion. But the
sum of the partial energies for all the original types of vibration
which have any same period, will be nearly identical (as a function
of phase, i.e., of the coördinates and momenta,) with the sum of
the partial energies for the normal types of vibration which have
the same, or nearly the same, period after the addition of the new
forces. If, therefore, the partial energies in the indices of the first
two ensembles (101) and (102) which relate to types of vibration
having the same periods, have the same divisors, the same will
be true of the index (103) of the ensemble of compound systems,
and the distribution represented will differ infinitesimally from one
which would be in statistical equilibrium after the addition of the
new forces.∗

∗It is interesting to compare the above relations with the laws respecting
the exchange of energy between bodies by radiation, although the phenomena
of radiations lie entirely without the scope of the present treatise, in which the
discussion is limited to systems of a finite number of degrees of freedom.
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The same would be true if in the indices of each of the original
ensembles we should substitute for the term or terms relating to
any period which does not occur in the other ensemble, any func-
tion of the total energy related to that period, subject only to the
general limitation expressed by equation(89). But in order that the
ensemble of compound systems (with the added forces) shall always
be approximately in statistical equilibrium, it is necessary that the
indices of the original ensembles should be linear functions of those
partial energies which relate to vibrations of periods common to
the two ensembles, and that the coefficients of such partial energies
should be the same in the two indices.∗

The properties of canonically distributed ensembles of systems
with respect to the equilibrium of the new ensembles which may
be formed by combining each system of one ensemble with each
system of another, are therefore not peculiar to them in the sense
that analogous properties do not belong to some other distributions
under special limitations in regard to the systems and forces consid-
ered. Yet the canonical distribution evidently constitutes the most
simple case of the kind, and that for which the relations described
hold with the least restrictions.

Returning to the case of the canonical distribution, we shall find
other analogies with thermodynamic systems, if we suppose, as in
the preceding chapters,† that the potential energy (εq) depends not
only upon the coördinates q1, . . . qn which determine the configura-
tion of the system, but also upon certain coördinates a1, a2, etc. of

∗The above may perhaps be sufficiently illustrated by the simple case where
n = 1 in each system. If the periods are different in the two systems, they may
be distributed according to any functions of the energies: but if the periods are
the same they must be distributed canonically with same modulus in order that
the compound ensemble with additional forces may be in statistical equilibrium.

†See especially Chapter I, p. 2.



statistical mechanics 48

bodies which we call external, meaning by this simply that they are
not to be regarded as forming any part of the system, although their
positions affect the forces which act on the system. The forces ex-
erted by the system upon these external bodies will be represented
by −dεq/da1, −dεq/da2, etc., while −dεq/dq1, . . .−dεq/dqn represent
all the forces acting upon the bodies of the system, including those
which depend upon the position of the external bodies, as well as
those which depend only upon the configuration of the system itself.
It will be understood that εp depends only upon q1, . . . qn p1, . . . pn,
in other words, that the kinetic energy of the bodies which we call
external forms no part of the kinetic energy of the system. It follows
that we may write

dε

da1

=
dεq
da1

= −A1, (104)

although a similar equation would not hold for differentiations rel-
ative to the internal coördinates.

We always suppose these external coördinates to have the same
values for all systems of any ensemble. In the case of a canonical
distribution, i.e., when the index of probability of phase is a linear
function of the energy, it is evident that the values of the external
coördinates will affect the distribution, since they affect the energy.
In the equation

e−
ψ
Θ =

∫
all· · ·

phases

∫
e−

ε
Θ dp1 . . . dqn, (105)

by which ψ may be determined, the external coördinates, a1, a2,
etc., contained implicitly in ε, as well as Θ, are to be regarded as
constant in the integrations indicated. The equation indicates that
ψ is a function of these constants. If we imagine their values varied,
and the ensemble distributed canonically according to their new
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values, we have by differentiation of the equation,

e−
ψ
Θ

(
− 1

Θ
dψ +

ψ

Θ2
dΘ

)
=

1

Θ2
dΘ

∫
all· · ·

phases

∫
εe−

ε
Θ dp1 . . . dqn

− 1

Θ
da1

∫
all· · ·

phases

∫
dε

da1

e−
ε
Θ dp1 . . . dqn

− 1

Θ
da2

∫
all· · ·

phases

∫
dε

da2

e−
ε
Θ dp1 . . . dqn − etc., (106)

or, multiplying by Θ e
ψ
Θ , and setting

− dε

da1

= A1, − dε

da2

= A2, etc.,

− dψ +
ψ

Θ
dΘ =

1

Θ
dΘ

∫
all· · ·

phases

∫
εe

ψ−ε
Θ dp1 . . . dqn

+ da1

∫
all· · ·

phases

∫
A1 e

ψ−ε
Θ dp1 . . . dqn

+ da2

∫
all· · ·

phases

∫
A2 e

ψ−ε
Θ dp1 . . . dqn + etc. (107)

Now the average value in the ensemble of any quantity (which we
shall denote in general by a horizontal line above the proper symbol)
is determined by the equation

u =

∫
all· · ·

phases

∫
u e

ψ−ε
Θ dp1 . . . dqn. (108)

Comparing this with the preceding equation, we have

dψ =
ψ

Θ
dΘ− ε

Θ
dΘ− A1 da1 − A2 da2 − etc. (109)
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Or, since
ψ − ε

Θ
= η, (110)

and

ψ − ε
Θ

= η, (111)

dψ = η dΘ− A1 da1 − A2 da2 − etc. (112)

Moreover, since (111) gives

dψ − dε = Θ dη + η dΘ, (113)

we have also

dε = −Θ dη − A1 da1 − A2 da2 − etc. (114)

This equation, if we neglect the sign of averages, is identical in
form with the thermodynamic equation

dη =
dε+ A1 da1 + A2 da2 + etc.

T
, (115)

or
dε = T dη − A1 da1 − A2 da2 − etc. (116)

which expresses the relation between the energy, temperature, and
entropy of a body in thermodynamic equilibrium, and the forces
which it exerts on external bodies,—a relation which is the math-
ematical expression of the second law of thermodynamics for re-
versible changes. The modulus in the statistical equation corre-
sponds to temperature in the thermodynamic equation, and the
average index of probability with its sign reversed corresponds to
entropy. But in the thermodynamic equation the entropy (η) is a
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quantity which is only defined by the equation itself, and incom-
pletely defined in that the equation only determines its differential,
and the constant of integration is arbitrary. On the other hand,
the η in the statistical equation has been completely defined as the
average value in a canonical ensemble of systems of the logarithm
of the coefficient of probability of phase.

We may also compare equation (112) with the thermodynamic
equation

dψ = −η dT − A1 da1 − A2 da2 − etc., (117)

where ψ represents the function obtained by subtracting the product
of the temperature and entropy from the energy.

How far, or in what sense, the similarity of these equations con-
stitutes any demonstration of the thermodynamic equations, or ac-
counts for the behavior of material systems, as described in the the-
orems of thermodynamics, is a question of which we shall postpone
the consideration until we have further investigated the properties
of an ensemble of systems distributed in phase according to the law
which we are considering. The analogies which have been pointed
out will at least supply the motive for this investigation, which will
naturally commence with the determination of the average values
in the ensemble of the most important quantities relating to the
systems, and to the distribution of the ensemble with respect to the
different values of these quantities.



V.

AVERAGE VALUES IN A CANONICAL ENSEMBLE OF
SYSTEMS.

In the simple but important case of a system of material points,
if we use rectangular coördinates, we have for the product of the
differentials of the coördinates

dx1 dy1 dz1 . . . dxν dyν dzν ,

and for the product of the differentials of the momenta

m1 dẋ1m1 dẏ1m1 dż1 . . .mν dẋνmν dẏνmν dżν .

The product of these expressions, which represents an element of
extension-in-phase, may be briefly written

m1 dẋ1 . . .mν dżν dx1 . . . dzν ;

and the integral∫
· · ·
∫
e
ψ−ε
Θ m1 dẋ1 . . .mν dżν dx1 . . . dzν (118)

will represent the probability that a system taken at random from
an ensemble canonically distributed will fall within any given limits
of phase.

In this case

ε = εq + 1
2
m1ẋ

2
1 + · · ·+ 1

2
mν ẋ

2
ν , (119)

and

e
ψ−ε
Θ = e

ψ−εq
Θ e−

m1ẋ2
1

2Θ . . . e−
mν ẋ2

ν

2Θ . (120)
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The potential energy (εq) is independent of the velocities, and if
the limits of integration for the coördinates are independent of the
velocities, and the limits of the several velocities are independent of
each other as well as of the coördinates, the multiple integral may
be resolved into the product of integrals∫

· · ·
∫
e
ψ−εq

Θ dx1 . . . dzν

∫
e−

m1ẋ2
1

2Θ m1dẋ1 . . .

∫
e−

mν ż2
ν

2Θ mν dżν .

(121)
This shows that the probability that the configuration lies within
any given limits is independent of the velocities, and that the prob-
ability that any component velocity lies within any given limits is
independent of the other component velocities and of the configu-
ration.

Since ∫ ∞
−∞

e−
m1ẋ2

1

2Θ m1dẋ1 =
√

2πm1Θ, (122)

and ∫ ∞
−∞

1
2
m1ẋ

2
1 e
−
m1ẋ2

1

2Θ m1dẋ1 =
√

1
2
πm1Θ3, (123)

the average value of the part of the kinetic energy due to the veloc-
ity ẋ1, which is expressed by the quotient of these integrals, is 1

2
Θ.

This is true whether the average is taken for the whole ensemble or
for any particular configuration, whether it is taken without refer-
ence to the other component velocities, or only those systems are
considered in which the other component velocities have particular
values or lie within specified limits.

The number of coördinates is 3ν or n. We have, therefore, for
the average value of the kinetic energy of a system

εp = 3
2
νΘ = 1

2
nΘ. (124)
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This is equally true whether we take the average for the whole en-
semble, or limit the average to a single configuration.

The distribution of the systems with respect to their component
velocities follows the ‘law of errors’; the probability that the value
of any component velocity lies within any given limits being repre-
sented by the value of the corresponding integral in (121) for those

limits, divided by (2πmΘ)
1
2 , which is the value of the same integral

for infinite limits. Thus the probability that the value of ẋ1 lies
between any given limits is expressed by( m1

2πΘ

) 1
2

∫
e−

m1ẋ2
1

2Θ dẋ1. (125)

The expression becomes more simple when the velocity is expressed
with reference to the energy involved. If we set

s =
(m1

2Θ

) 1
2
ẋ1,

the probability that s lies between any given limits is expressed by

1√
π

∫
e−s

2

ds. (126)

Here s is the ratio of the component velocity to that which would
give the energy Θ; in other words, s2 is the quotient of the energy
due to the component velocity divided by Θ. The distribution with
respect to the partial energies due to the component velocities is
therefore the same for all the component velocities.

The probability that the configuration lies within any given lim-
its is expressed by the value of

M
3
2 (2πΘ)

3ν
2

∫
· · ·
∫
e
ψ−ε
Θ dx1 . . . dxν (127)
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for those limits, where M denotes the product of all the masses.
This is derived from (121) by substitution of the values of the inte-
grals relating to velocities taken for infinite limits.

Very similar results may be obtained in the general case of a
conservative system of n degrees of freedom. Since εp is a homoge-
neous quadratic function of the p’s, it may be divided into parts by
the formula

εp = 1
2
p1
dεp
dp1

+ · · ·+ 1
2
pn

dεp
dpn

, (128)

where εmight be written for εp in the differential coefficients without
affecting the signification. The average value of the first of these
parts, for any given configuration, is expressed by the quotient∫ ∞

−∞
· · ·
∫ ∞
−∞

1
2
p1

dε

dp1

e
ψ−ε
Θ dp1 . . . dpn∫ ∞

−∞
· · ·
∫ ∞
−∞

e
ψ−ε
Θ dp1 . . . dpn

. (129)

Now we have by integration by parts∫ ∞
−∞

p1e
ψ−ε
Θ

dε

dp1

dp1 = Θ

∫ ∞
−∞

e
ψ−ε
Θ dp1. (130)

By substitution of this value, the above quotient reduces to 1
2
Θ,

which is therefore the average value of 1
2
p1

dε

dp1

for the given con-

figuration. Since this value is independent of the configuration, it
must also be the average for the whole ensemble, as might easily be
proved directly. (To make the preceding proof apply directly to the
whole ensemble, we have only to write dp1 . . . dqn for dp1 . . . dpn in
the multiple integrals.) This gives 1

2
nΘ for the average value of the
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whole kinetic energy for any given configuration, or for the whole
ensemble, as has already been proved in the case of material points.

The mechanical significance of the several parts into which the
kinetic energy is divided in equation (128) will be apparent if we
imagine that by the application of suitable forces (different from
those derived from εq and so much greater that the latter may be
neglected in comparison) the system was brought from rest to the
state of motion considered, so rapidly that the configuration was not
sensibly altered during the process, and in such a manner also that
the ratios of the component velocities were constant in the process.
If we write

F1 dq1 + · · ·+ Fn dqn

for the moment of these forces, we have for the period of their action
by equation (3)

ṗ1 = −dεp
dq1

− dεq
dq1

+ F1 = − dε

dq1

+ F1.

The work done by the force F1 may be evaluated as follows:∫
F1 dq1 =

∫
ṗ1 dq1 +

∫
dε

dq1

dq1,

where the last term may be cancelled because the configuration does
not vary sensibly during the application of the forces. (It will be
observed that the other terms contain factors which increase as the
time of the action of the forces is diminished.) We have therefore,∫

F1 dq1 =

∫
ṗ1q̇1 dt =

∫
q̇1 dp1 =

q̇1

p1

∫
p1 dp1. (131)

For since the p’s are linear functions of the q̇’s (with coefficients
involving the q’s) the supposed constancy of the q’s and of the ratios
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of the q̇’s will make the ratio q̇1/p1 constant. The last integral is
evidently to be taken between the limits zero and the value of p1

in the phase originally considered, and the quantities before the
integral sign may be taken as relating to that phase. We have
therefore ∫

F1 dq1 = 1
2
p1q̇1 = 1

2
p1

dε

dp1

. (132)

That is: the several parts into which the kinetic energy is divided
in equation (128) represent the amounts of energy communicated
to the system by the several forces F1, . . .Fn under the conditions
mentioned.

The following transformation will not only give the value of the
average kinetic energy, but will also serve to separate the distribu-
tion of the ensemble in configuration from its distribution in velocity.

Since 2εp is a homogeneous quadratic function of the p’s, which
is incapable of a negative value, it can always be expressed (and
in more than one way) as a sum of squares of linear functions of
the p’s.∗ The coefficients in these linear functions, like those in the
quadratic function, must be regarded in the general case as functions
of the q’s. Let

2εp = u2
1 + u2

2 + · · ·+ u2
n (133)

where u1, . . .un are such linear functions of the p’s. If we write

d(p1 . . . pn)

d(u1 . . . un)

for the Jacobian or determinant of the differential coefficients of the

∗The reduction requires only the repeated application of the process of
‘completing the square’ used in the solution of quadratic equations.
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form dp/du, we may substitute

d(p1 . . . pn)

d(u1 . . . un)
du1 . . . dun

for
dp1 . . . dpn

under the multiple integral sign in any of our formulae. It will be
observed that this determinant is function of the q’s alone. The sign
of such a determinant depends on the relative order of the variables
in the numerator and denominator. But since the suffixes of the u’s
are only used to distinguish these functions from one another, and
no especial relation is supposed between a p and a u which have the
same suffix, we may evidently, without loss of generality, suppose
the suffixes so applied that the determinant is positive.

Since the u’s are linear functions of the p’s, when the integrations
are to cover all values of the p’s (for constant q’s) once and only
once, they must cover all values of the u’s once and only once, and
the limits will be ±∞ for all the u’s. Without the supposition of
the last paragraph the upper limits would not always be +∞, as is
evident on considering the effect of changing the sign of a u. But
with the supposition which we have made (that the determinant
is always positive) we may make the upper limits +∞ and the
lower −∞ for all the u’s. Analogous considerations will apply where
the integrations do not cover all values of the p’s and therefore of
the u’s. The integrals may always be taken from a less to a greater
value of a u.

The general integral which expresses the fractional part of the
ensemble which falls within any given limits of phase is thus reduced
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to the form∫
· · ·
∫
e
ψ−εq

Θ
d(p1 . . . pn)

d(u1 . . . un)
e−

u2
1+···+u2

n

2Θ du1 . . . dun dq1 . . . dqn. (134)

For the average value of the part of the kinetic energy which
is represented by 1

2
u2

1, whether the average is taken for the whole
ensemble, or for a given configuration, we have therefore

1
2
u2

1 =

∫ ∞
−∞

1
2
u2

1e
−
u2

1

2Θ du1∫ ∞
−∞

e−
u2

1

2Θ du1

=
(1

2
πΘ3)

1
2

(2πΘ)
1
2

=
Θ

2
, (135)

and for the average of the whole kinetic energy, 1
2
nΘ, as before.

The fractional part of the ensemble which lies within any given
limits of configuration, is found by integrating (134) with respect to
the u’s from −∞ to +∞. This gives

(2πΘ)
n
2

∫
· · ·
∫
e
ψ−εq

Θ
d(p1 . . . pn)

d(u1 . . . un)
dq1 . . . dqn (136)

which shows that the value of the Jacobian is independent of the
manner in which 2εp is divided into a sum of squares. We may
verify this directly, and at the same time obtain a more convenient
expression for the Jacobian, as follows.

It will be observed that since the u’S are linear functions of
the p’s, and the p’s linear functions of the q̇’s, the u’s will be
linear functions of the q̇’s, so that a differential coefficient of the
form du/dq̇ will be independent of the q̇’s, and function of the q’s
alone. Let us write dpx/duy for the general element of the Jacobian
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determinant. We have

dpx
duy

=
d

duy

dε

dq̇x
=

d

duy

r=n∑
r=1

dε

dur

dur
dq̇x

=
r=n∑
r=1

(
d2ε

duy dur

dur
dq̇x

)
=

d

dq̇x

dε

duy
=
duy
dq̇x

. (137)

Therefore
d(p1 . . . pn)

d(u1 . . . un)
=
d(u1 . . . un)

d(q̇1 . . . q̇n)
(138)

and (
d(p1 . . . pn)

d(u1 . . . un)

)2

=

(
d(u1 . . . un)

d(q̇1 . . . q̇n)

)2

=
d(p1 . . . pn)

d(q̇1 . . . q̇n)
. (139)

These determinants are all functions of the q’s alone.∗ The last
is evidently the Hessian or determinant formed of the second dif-
ferential coefficients of the kinetic energy with respect to q̇1, . . . q̇n.
We shall denote it by ∆q̇. The reciprocal determinant

d(q̇1 . . . q̇n)

d(p1 . . . pn)
,

which is the Hessian of the kinetic energy regarded as function of
the p’s, we shall denote by ∆p.

∗It will be observed that the proof of (137) depends on the linear rela-

tion between the u’s and q’s, which makes
dur
dq̇x

constant with respect to the

differentiations here considered. Compare note on p. 11.
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If we set

e−
ψp
Θ =

∫ ∞
−∞
· · ·
∫ ∞
−∞

e−
εp
Θ ∆

1
2
p dp1 . . . dpn

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

e
−u2

1−···−u2
n

2Θ du1 . . . dun = (2πΘ)
n
2 , (140)

and
ψq = ψ − ψp, (141)

the fractional part of the ensemble which lies within any given limits
of configuration (136) may be written∫

· · ·
∫
e
ψq−εq

Θ ∆
1
2
q̇ dq1 . . . dqn, (142)

where the constant ψq may be determined by the condition that the
integral extended over all configurations has the value unity.∗

∗In the simple but important case in which ∆q̇ is independent of the q’s,
and εq a quadratic function of the q’s, if we write εα for the least value of εq (or
of ε) consistent with the given values of the external coördinates, the equation
determining ψq may be written

e
εα−ψq

Θ = ∆
1
2

q̇

∫ ∞
−∞
· · ·
∫ ∞
−∞

e−
(εq−εα)

Θ dq1 . . . dqn.

If we denote by q′1, . . . q′n the values of q1, . . . qn which give εq its least value εα,
it is evident that εq − εα is a homogeneous quadratic function of the differences
q1 − q′1, etc., and that dq1, . . . dqn may be regarded as the differentials of these
differences. The evaluation of this integral is therefore analytically similar to
that of the integral ∫ ∞

−∞
· · ·
∫ ∞
−∞

e−
εp
Θ dp1 . . . dpn,

for which we have found the value ∆
− 1

2
p (2πΘ)

n
2 . By the same method, or by
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analogy, we get

e
εα−ψq

Θ =

(
∆q̇

∆q

) 1
2

(2πΘ)
n
2 ,

where ∆q is the Hessian of the potential energy as function of the q’s. It will be
observed that ∆q depends on the forces of the system and is independent of the
masses, while ∆q̇ or its reciprocal ∆p depends on the masses and is indepen-
dent of the forces. While each Hessian depends on the system of coördinates
employed, the ratio ∆q/∆q̇ is the same for all systems.

Multiplying the last equation by (140), we have

e
εα−ψ

Θ =

(
∆q̇

∆q

) 1
2

(2πΘ)n.

For the average value of the potential energy, we have

εq − εα =

∫ ∞
−∞
· · ·
∫ ∞
−∞

(εq − εα)e−
εq−εα

Θ dq1 . . . dqn∫ ∞
−∞
· · ·
∫ ∞
−∞

e−
εq−εα

Θ dq1 . . . dqn

.

The evaluation of this expression is similar to that of∫ ∞
−∞
· · ·
∫ ∞
−∞

εpe
−
εp
Θ dp1 . . . dpn∫ ∞

−∞
· · ·
∫ ∞
−∞

e−
εp
Θ dp1 . . . dpn

,

which expresses the average value of the kinetic energy, and for which we have
found the value 1

2nΘ. We have accordingly

εq − εα = 1
2nΘ.

Adding the equation
εp = 1

2nΘ,

we have
ε− εα = nΘ.
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When an ensemble of systems is distributed in configuration in
the manner indicated in this formula, i.e., when its distribution in
configuration is the same as that of an ensemble canonically dis-
tributed in phase, we shall say, without any reference to its veloci-
ties, that it is canonically distributed in configuration.

For any given configuration, the fractional part of the systems
which lie within any given limits of velocity is represented by the
quotient of the multiple integral∫

· · ·
∫
e−

εp
Θ dp1 . . . dpn,

or its equivalent ∫
· · ·
∫
e
−u2

1−···−u2
n

2Θ ∆
1
2
q̇ du1 . . . dun,

taken within those limits divided by the value of the same integral
for the limits ±∞. But the value, of the second multiple integral
for the limits ±∞ is evidently

∆
1
2
q̇ (2πΘ)

n
2 .

We may therefore write∫
· · ·
∫
e
ψp−εp

Θ du1 . . . dun, (143)

or ∫
· · ·
∫
e
ψp−εp

Θ ∆
1
2
p dp1 . . . dpn, (144)

or again ∫
· · ·
∫
e
ψp−εp

Θ ∆
1
2
q̇ dq̇1 . . . dq̇n, (145)
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for the fractional part of the systems of any given configuration
which lie within given limits of velocity.

When systems are distributed in velocity according to these for-
mulae, i.e., when the distribution in velocity is like that in an en-
semble which is canonically distributed in phase, we shall say that
they are canonically distributed in velocity.

The fractional part of the whole ensemble which falls within any
given limits of phase, which we have before expressed in the form∫

· · ·
∫
e
ψ−ε
Θ dp1 . . . dpn dq1 . . . dqn, (146)

may also be expressed in the form∫
· · ·
∫
e
ψ−ε
Θ ∆q̇ dq̇1 . . . dq̇n dq1 . . . dqn. (147)



VI.

EXTENSION IN CONFIGURATION AND EXTENSION IN
VELOCITY.

The formulae relating to canonical ensembles in the closing para-
graphs of the last chapter suggest certain general notions and prin-
ciples, which we shall consider in this chapter, and which are not at
all limited in their application to the canonical law of distribution.∗

We have seen in Chapter IV. that the nature of the distribu-
tion which we have called canonical is independent of the system of
coördinates by which it is described, being determined entirely by
the modulus. It follows that the value represented by the multiple
integral (142), which is the fractional part of the ensemble which lies
within certain limiting configurations, is independent of the system
of coördinates, being determined entirely by the limiting configura-
tions with the modulus. Now ψ, as we have already seen, represents
a value which is independent of the system of coördinates by which
it is defined. The same is evidently true of ψp by equation (140),
and therefore, by (141), of ψq. Hence the exponential factor in the
multiple integral (142) represents a value which is independent of
the system of coördinates. It follows that the value of a multiple
integral of the form ∫

· · ·
∫

∆
1
2
q̇ dq1 . . . dqn (148)

∗These notions and principles are in fact such as a more logical arrange-
ment of the subject would place in connection with those of Chapter I., to
which they are closely related. The strict requirements of logical order have
been sacrificed to the natural development of the subject, and very elementary
notions have been left until they have presented themselves in the study of the
leading problems.



statistical mechanics 66

is independent of the system of coördinates which is employed for
its evaluation, as will appear at once, if we suppose the multiple
integral to be broken up into parts so small that the exponential
factor may be regarded as constant in each.

In the same way the formulae (144) and (145) which express
the probability that a system (in a canonical ensemble) of given
configuration will fall within certain limits of velocity, show that
multiple integrals of the form∫

· · ·
∫

∆
1
2
p dp1 . . . dpn (149)

or ∫
· · ·
∫

∆
1
2
q̇ dq̇1 . . . dq̇n (150)

relating to velocities possible for a given configuration, when the
limits are formed by given velocities, have values independent of
the system of coördinates employed.

These relations may easily be verified directly. It has already
been proved that

d(P1, . . . Pn)

d(p1, . . . pn)
=

d(q̇1, . . . q̇n)

d(Q1, . . . Qn)
=

d(q1, . . . qn)

d(Q1, . . . Qn)

where q1, . . . qn, p1, . . . pn and Q1, . . .Qn, P1, . . .Pn are two systems
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of coördinates and momenta.∗ It follows that∫
· · ·
∫ (

d(p1, . . . pn)

d(q̇1, . . . q̇n)

) 1
2

dq1 . . . dqn

=

∫
· · ·
∫ (

d(p1, . . . pn)

d(q̇1, . . . q̇n)

) 1
2 d(q1, . . . qn)

d(Q1, . . . Qn)
dQ1 . . . dQn

=

∫
· · ·
∫ (

d(p1, . . . pn)

d(q̇1, . . . q̇n)

) 1
2
(
d(P1, . . . Pn)

d(p1, . . . pn)

) 1
2
(
d(q̇1, . . . q̇n)

d(Q̇1, . . . Q̇n)

) 1
2

dQ1 . . . dQn

=

∫
· · ·
∫ (

d(P1, . . . Pn)

d(Q̇1, . . . Q̇n)

) 1
2

dQ1 . . . dQn,

and∫
· · ·
∫ (

d(Q̇1, . . . Q̇n)

d(P1, . . . Pn)

) 1
2

dP1 . . . dPn

=

∫
· · ·
∫ (

d(Q̇1, . . . Q̇n)

d(P1, . . . Pn)

) 1
2
d(P1, . . . Pn)

d(p1, . . . pn)
dp1 . . . dpn

=

∫
· · ·
∫ (

d(Q̇1, . . . Q̇n)

d(P1, . . . Pn)

) 1
2 (

d(P1, . . . Pn)

d(p1, . . . pn)

) 1
2
(
d(q̇1, . . . q̇n)

d(Q̇1, . . . Q̇n)

) 1
2

dp1 . . . dpn

=

∫
· · ·
∫ (

d(q̇1, . . . q̇n)

d(p1, . . . pn)

) 1
2

dp1 . . . dpn.

The multiple integral∫
· · ·
∫
dp1 . . . dpn dq1 . . . dqn, (151)

which may also be written∫
· · ·
∫

∆q̇ dq̇1 . . . dq̇n dq1 . . . dqn, (152)

∗See equation (29).
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and which, when taken within any given limits of phase, has been
shown to have a value independent of the coördinates employed, ex-
presses what we have called an extension-in-phase.∗ In like manner
we may say that the multiple integral (148) expresses an extension-
in-configuration, and that the multiple integrals (149) and (150)
express an extension-in-velocity. We have called

dp1 . . . dpn dq1 . . . dqn, (153)

which is equivalent to

∆q̇ dq̇1 . . . dq̇n dq1 . . . dqn, (154)

an element of extension-in-phase. We may call

∆
1
2
q̇ dq1 . . . dqn (155)

an element of extension-in-configuration, and

∆
1
2
p dp1 . . . dpn, (156)

or its equivalent

∆
1
2
q̇ dq̇1 . . . dq̇n, (157)

an element of extension-in-velocity.
An extension-in-phase may always be regarded as an integral

of elementary extensions-in-configuration multiplied each by an
extension-in-velocity. This is evident from the formulae (151) and
(152) which express an extension-in-phase, if we imagine the inte-
grations relative to velocity to be first carried out.

∗See Chapter I, p. 9.
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The product of the two expressions for an element of extension-
in-velocity (149) and (150) is evidently of the same dimensions as
the product

p1 . . . pnq̇1 . . . q̇n,

that is, as the nth power of energy, since every product of the
form p1q̇1 has the dimensions of energy. Therefore an extension-
in-velocity has the dimensions of the square root of the nth power
of energy. Again we see by (155) and (156) that the product of an
extension-in-configuration and an extension-in-velocity have the di-
mensions of the nth power of energy multiplied by the nth power of
time. Therefore an extension-in-configuration has the dimensions of
the nth power of time multiplied by the square root of the nth power
of energy.

To the notion of extension-in-configuration there attach them-
selves certain other notions analogous to those which have presented
themselves in connection with the notion of extension-in-phase. The
number of systems of any ensemble (whether distributed canoni-
cally or in any other manner) which are contained in an element of
extension-in-configuration, divided by the numerical value of that
element, may be called the density-in-configuration. That is, if a
certain configuration is specified by the coördinates q1, . . . qn, and
the number of systems of which the coördinates fall between the
limits q1 and q1 + dq1, . . . qn and qn + dqn is expressed by

Dq∆
1
2
q̇ dq1 . . . dqn, (158)

Dq will be the density-in-configuration. And if we set

eηq =
Dq

N
, (159)
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where N denotes, as usual, the total number of systems in the
ensemble, the probability that an unspecified system of the ensemble
will fall within the given limits of configuration, is expressed by

eηq ∆
1
2
q̇ dq1 . . . dqn. (160)

We may call eηq the coefficient of probability of the configuration,
and ηq the index of probability of the configuration.

The fractional part of the whole number of systems which are
within any given limits of configuration will be expressed by the
multiple integral ∫

· · ·
∫
eηq ∆

1
2
q̇ dq1 . . . dqn. (161)

The value of this integral (taken within any given configurations)
is therefore independent of the system of coördinates which is used.
Since the same has been proved of the same integral without the
factor eηq , it follows that the values of ηq and Dq for a given con-
figuration in a given ensemble are independent of the system of
coördinates which is used.

The notion of extension-in-velocity relates to systems having the
same configuration.∗ If an ensemble is distributed both in configura-
tion and in velocity, we may confine our attention to those systems

∗Except in some simple cases, such as a system of material points, we cannot
compare velocities in one configuration with velocities in another, and speak of
their identity or difference except in a sense entirely artificial. We may indeed
say that we call the velocities in one configuration the same as those in another
when the quantities q̇1, . . . q̇n have the same values in the two cases. But this
signifies nothing until the system of coördinates has been defined. We might
identify the velocities in the two cases which make the quantities p1, . . . pn the
same in each. This again would signify nothing independently of the system of
coördinates employed.
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which are contained within certain infinitesimal limits of configu-
ration, and compare the whole number of such systems with those
which are also contained within certain infinitesimal limits of veloc-
ity. The second of these numbers divided by the first expresses the
probability that a system which is only specified as falling within
the infinitesimal limits of configuration shall also fall within the in-
finitesimal limits of velocity. If the limits with respect to velocity are
expressed by the condition that the momenta shall fall between the
limits p1 and p1 + dp1, . . . pn and pn + dpn the extension-in-velocity
within those limits will be

∆
1
2
p dp1 . . . dpn,

and we may express the probability in question by

eηp ∆
1
2
p dp1 . . . dpn. (162)

This may be regarded as defining ηp.
The probability that a system which is only specified as having a

configuration within certain infinitesimal limits shall also fall within
any given limits of velocity will be expressed by the multiple integral∫

· · ·
∫
eηp ∆

1
2
p dp1 . . . dpn, (163)

or its equivalent ∫
· · ·
∫
eηp ∆

1
2
q̇ dq̇1 . . . dq̇n, (164)

taken within the given limits.
It follows that the probability that the system will fall within

the limits of velocity, q̇1 and q̇1 +dq̇1, . . . q̇n and q̇n+dq̇n is expressed
by

eηp ∆
1
2
q̇ dq̇1 . . . dq̇n. (165)



statistical mechanics 72

The value of the integrals (163), (164) is independent of the
system of coördinates and momenta which is used, as is also the
value of the same integrals without the factor eηp ; therefore the
value of ηp must be independent of the system of coördinates and
momenta. We may call eηp the coefficient of probability of velocity,
and ηp the index of probability of velocity.

Comparing (160) and (162) with (40), we get

eηqeηp = P = eη (166)

or
ηq + ηp = η. (167)

That is: the product of the coefficients of probability of configu-
ration and of velocity is equal to the coefficient of probability of
phase; the sum of the indices of probability of configuration and of
velocity is equal to the index of probability of phase.

It is evident that eηq and eηp have the dimensions of the recipro-
cals of extension-in-configuration and extension-in-velocity respec-

tively, i.e., the dimensions of t−nε−
n
2 and ε−

n
2 , where t represents

any time, and ε any energy. If, therefore, the unit of time is multi-
plied by ct, and the unit of energy by cε, every ηq will be increased
by the addition of

n log ct + 1
2
n log cε, (168)

and every ηp by the addition of

1
2
n log cε.

∗ (169)

∗Compare (47) in Chapter I.
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It should be observed that the quantities which have been called
extension-in-configuration and extension-in-velocity are not, as the
terms might seem to imply, purely geometrical or kinematical con-
ceptions. To express their nature more fully, they might appropri-
ately have been called, respectively, the dynamical measure of the
extension in configuration, and the dynamical measure of the exten-
sion in velocity. They depend upon the masses, although not upon
the forces of the system. In the simple case of material points, where
each point is limited to a given space, the extension-in-configuration
is the product of the volumes within which the several points are
confined (these may be the same or different), multiplied by the
square root of the cube of the product of the masses of the several
points. The extension-in-velocity for such systems is most easily de-
fined as the extension-in-configuration of systems which have moved
from the same configuration for the unit of time with the given ve-
locities.

In the general case, the notions of extension-in-configuration and
extension-in-velocity may be connected as follows.

If an ensemble of similar systems of n degrees of freedom have the
same configuration at a given instant, but are distributed through-
out any finite extension-in-velocity, the same ensemble after an in-
finitesimal interval of time δt will be distributed throughout an ex-
tension in configuration equal to its original extension-in-velocity
multiplied by δtn.

In demonstrating this theorem, we shall write q′1, . . . q′n for the
initial values of the coördinates. The final values will evidently be
connected with the initial by the equations

q1 − q′1 = q̇1 δt, . . . , qn − q′n = q̇n δt. (170)

Now the original extension-in-velocity is by definition represented
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by the integral ∫
· · ·
∫

∆
1
2
q̇ dq̇1 . . . dq̇n, (171)

where the limits may be expressed by an equation of the form

F (q̇1, . . . q̇n) = 0. (172)

The same integral multiplied by the constant δtn may be written∫
· · ·
∫

∆
1
2
q̇ d(q̇1 δt) . . . d(q̇n δt), (173)

and the limits may be written

F (q̇1, . . . q̇n) = f(q̇1 δt, . . . q̇n δt) = 0. (174)

(It will be observed that δt as well as ∆q̇ is constant in the integra-
tions.) Now this integral is identically equal to∫

· · ·
∫

∆
1
2
q̇ d(q1 − q′1) . . . d(qn − q′n), (175)

or its equivalent ∫
· · ·
∫

∆
1
2
q̇ dq1 . . . dqn, (176)

with limits expressed by the equation

f(q1 − q′1, . . . qn − q′n) = 0. (177)

But the systems which initially had velocities satisfying the equa-
tion (172) will after the interval δt have configurations satisfying
equation (177). Therefore the extension-in-configuration repre-
sented by the last integral is that which belongs to the systems
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which originally had the extension-in-velocity represented by the
integral (171).

Since the quantities which we have called extensions-in-phase,
extensions-in-configuration, and extensions-in-velocity are indepen-
dent of the nature of the system of coördinates used in their defi-
nitions, it is natural to seek definitions which shall be independent
of the use of any coördinates. It will be sufficient to give the fol-
lowing definitions without formal proof of their equivalence with
those given above, since they are less convenient for use than those
founded on systems of coördinates, and since we shall in fact have
no occasion to use them.

We commence with the definition of extension-in-velocity. We
may imagine n independent velocities, V1, . . .Vn of which a system
in a given configuration is capable. We may conceive of the system
as having a certain velocity V0 combined with a part of each of
these velocities V1, . . .Vn. By a part of V1 is meant a velocity of
the same nature as V1 but in amount being anything between zero
and V1. Now all the velocities which may be thus described may
be regarded as forming or lying in a certain extension of which we
desire a measure. The case is greatly simplified if we suppose that
certain relations exist between the velocities V1, . . .Vn viz.: that
the kinetic energy due to any two of these velocities combined is
the sum of the kinetic energies due to the velocities separately. In
this case the extension-in-motion is the square root of the product of
the doubled kinetic energies due to the n velocities V1, . . .Vn taken
separately.

The more general case may be reduced to this simpler case as
follows. The velocity V2 may always be regarded as composed of two
velocities V ′2 and V ′′2 , of which V ′2 is of the same nature as V1, (it may
be more or less in amount, or opposite in sign,) while V ′′2 satisfies the
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relation that the kinetic energy due to V1 and V ′′2 combined is the
sum of the kinetic energies due to these velocities taken separately.
And the velocity V3 may be regarded as compounded of three, V ′3 ,
V ′′3 , V ′′′3 , of which V ′3 is of the same nature as V1, V ′′3 of the same
nature as V ′′2 , while V ′′′3 satisfies the relations that if combined either
with V1 or V ′′2 the kinetic energy of the combined velocities is the
sum of the kinetic energies of the velocities taken separately. When
all the velocities V2, . . .Vn have been thus decomposed, the square
root of the product of the doubled kinetic energies of the several
velocities V1, V ′′2 . V ′′′3 , etc., will be the value of the extension-in-
velocity which is sought.

This method of evaluation of the extension-in-velocity which we
are considering is perhaps the most simple and natural, but the re-
sult may be expressed in a more symmetrical form. Let us write ε12

for the kinetic energy of the velocities V1 and V2 combined, dimin-
ished by the sum of the kinetic energies due to the same velocities
taken separately. This may be called the mutual energy of the
velocities V1 and V2. Let the mutual energy of every pair of the
velocities V1, . . .Vn be expressed in the same way. Analogy would
make ε11 represent the energy of twice V1 diminished by twice the
energy of V1, i.e., ε11 would represent twice the energy of V1, al-
though the term mutual energy is hardly appropriate to this case.
At all events, let ε11 have this signification, and ε22 represent twice
the energy of V2, etc. The square root of the determinant∣∣∣∣∣∣∣∣

ε11 ε12 · · · ε1n
ε21 ε22 · · · ε2n
· · · · · · · · · · · ·
εn1 εn2 · · · εnn

∣∣∣∣∣∣∣∣
represents the value of the extension-in-velocity determined as
above described by the velocities V1, . . .Vn.
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The statements of the preceding paragraph may be readily
proved from the expression (157) on page 68, viz.,

∆
1
2
q̇ dq̇1 . . . dq̇n

by which the notion of an element of extension-in-velocity was
originally defined. Since ∆q̇ in this expression represents the deter-
minant of which the general element is

d2ε

dq̇i dq̇j

the square of the preceding expression represents the determinant
of which the general element is

d2ε

dq̇i dq̇j
dq̇i dq̇j.

Now we may regard the differentials of velocity dq̇i, dq̇j as them-
selves infinitesimal velocities. Then the last expression represents
the mutual energy of these velocities, and

d2ε

dq̇2
i

dq̇2
i

represents twice the energy due to the velocity dq̇i.
The case which we have considered is an extension-in-velocity of

the simplest form. All extensions-in-velocity do not have this form,
but all may be regarded as composed of elementary extensions of
this form, in the same manner as all volumes may be regarded as
composed of elementary parallelepipeds.

Having thus a measure of extension-in-velocity founded, it will
be observed, on the dynamical notion of kinetic energy, and not
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involving an explicit mention of coördinates, we may derive from it
a measure of extension-in-configuration by the principle connecting
these quantities which has been given in a preceding paragraph of
this chapter.

The measure of extension-in-phase may be obtained from that of
extension-in-configuration and of extension-in-velocity. For to every
configuration in an extension-in-phase there will belong a certain
extension-in-velocity, and the integral of the elements of extension-
in-configuration within any extension-in-phase multiplied each by
its extension-in-velocity is the measure of the extension-in-phase.



VII.

FARTHER DISCUSSION OF AVERAGES IN A CANONICAL
ENSEMBLE OF SYSTEMS.

Returning to the case of a canonical distribution, we have for the
index of probability of configuration

ηq =
ψq − εq

Θ
(178)

as appears on comparison of formulae (142) and (161). It follows
immediately from (142) that the average value in the ensemble of
any quantity u which depends on the configuration alone is given
by the formula

u =

∫
all· · ·

config.

∫
u e

ψq−εq
Θ ∆

1
2
q̇ dq1 . . . dqn, (179)

where the integrations cover all possible configurations. The value
of ψq is evidently determined by the equation

e−
ψq
Θ =

∫
all· · ·

config.

∫
e−

εq
Θ ∆

1
2
q̇ dq1 . . . dqn. (180)

By differentiating the last equation we may obtain results anal-
ogous to those obtained in Chapter IV. from the equation

e−
ψ
Θ =

∫
all· · ·

phases

∫
e−

ε
Θ dp1 . . . dqn.

As the process is identical, it is sufficient to give the results:

dψq = ηq dΘ− A1 da1 − A2 da2 − etc., (181)
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or, since
ψq = εq + Θηq, (182)

and

dψq = dεq + ηq dΘ + Θ dηq, (183)

dεq = −Θ dηq − A1 da1 − A2 da2 − etc. (184)

It appears from this equation that the differential relations subsist-
ing between the average potential energy in an ensemble of systems
canonically distributed, the modulus of distribution, the average in-
dex of probability of configuration, taken negatively, and the average
forces exerted on external bodies, are equivalent to those enunciated
by Clausius for the potential energy of a body, its temperature, a
quantity which he called the disgregation, and the forces exerted on
external bodies.∗

For the index of probability of velocity, in the case of canonical
distribution, we have by comparison of (144) and (163), or of (145)
and (164),

ηp =
ψp − εp

Θ
, (185)

which gives

ηp =
ψp − εp

Θ
; (186)

we have also
εp = 1

2
nΘ, (187)

and by (140),
ψp = −1

2
nΘ log(2πΘ). (188)

∗Pogg. Ann. Bd. CXVI, S. 73, (1862); ibid., Bd. CXXV, S. 353, (1865),
See also Boltzmann, Sitzb. der Wiener Akad., Bd. LXIII, S. 728, (1871).
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From these equations we get by differentiation

dψp = ηp dΘ, (189)

and
dεp = −Θ dηp. (190)

The differential relation expressed in this equation between the av-
erage kinetic energy, the modulus, and the average index of prob-
ability of velocity, taken negatively, is identical with that given by
Clausius locis citatis for the kinetic energy of a body, the temper-
ature, and a quantity which he called the transformation-value of
the kinetic energy.∗ The relations

ε = εq + εp, η = ηq + ηp

are also identical with those given by Clausius for the corresponding
quantities.

Equations (112) and (181) show that if ψ or ψq is known as
function of Θ and a1, a2, etc., we can obtain by differentiation
ε or εq, and A1, A2, etc. as functions of the same variables. We have
in fact

ε = ψ −Θη = ψ −Θ
dψ

dΘ
, (191)

εq = ψq −Θηq = ψq −Θ
dψq
dΘ

. (192)

The corresponding equation relating to kinetic energy,

εp = ψp −Θηp = ψp −Θ
dψp
dΘ

, (193)

∗Verwandlungswerth des Wärmeinhaltes.
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which may be obtained in the same way, may be verified by the
known relations (186), (187), and (188) between the variables. We
have also

A1 = − dψ
da1

= −dψq
da1

, (194)

etc., so that the average values of the external forces may be derived
alike from ψ or from ψq.

The average values of the squares or higher powers of the energies
(total, potential, or kinetic) may easily be obtained by repeated
differentiations of ψ, ψq, ψp, or ε, εq, εp, with respect to Θ. By
equation (108) we have

ε =

∫
all· · ·

phases

∫
ε e

ψ−ε
Θ dp1 . . . dqn, (195)

and differentiating with respect to Θ,

dε

dΘ
=

∫
all· · ·

phases

∫ (
ε2 − ψε

Θ2
+
ε

Θ

dψ

dΘ

)
e
ψ−ε
Θ dp1 . . . dqn, (196)

whence, again by (108),

dε

dΘ
=
ε2 − ψε

Θ2
+
ε

Θ

dψ

dΘ
,

or

ε2 = Θ2 dε

dΘ
+ ε

(
ψ −Θ

dψ

dΘ

)
. (197)

Combining this with (191),

ε2 = ε2 + Θ2 dε

dΘ
=

(
ψ −Θ

dψ

dΘ

)2

−Θ3 d
2ψ

dΘ2
. (198)
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In precisely the same way, from the equation

εq =

∫
all· · ·

config.

∫
εq e

ψq−εq
Θ ∆

1
2
q̇ dq1 . . . dqn, (199)

we may obtain

ε2q = ε2q + Θ2dεq
dΘ

=

(
ψq −Θ

dψq
dΘ

)2

−Θ3 d
2ψq
dΘ2

. (200)

In the same way also, if we confine ourselves to a particular
configuration, from the equation

εp =

∫
all· · ·

veloc.

∫
εp e

ψp−εp
Θ ∆

1
2
p dp1 . . . dpn, (201)

we obtain

ε2p = ε2p + Θ2dεp
dΘ

=

(
ψp −Θ

dψp
dΘ

)2

−Θ3 d
2ψp
dΘ2

, (202)

which by (187) reduces to

ε2p = (1
4
n2 + 1

2
n)Θ2. (203)

Since this value is independent of the configuration, we see that the
average square of the kinetic energy for every configuration is the
same, and therefore the same as for the whole ensemble. Hence
ε2p may be interpreted as the average either for any particular con-
figuration, or for the whole ensemble. It will be observed that the
value of this quantity is determined entirely by the modulus and the
number of degrees of freedom of the system, and is in other respects
independent of the nature of the system.
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Of especial importance are the anomalies of the energies, or their
deviations from their average values. The average value of these
anomalies is of course zero. The natural measure of such anomalies
is the square root of their average square. Now

(ε− ε)2 = ε2 − ε2, (204)

identically. Accordingly

(ε− ε)2 = Θ2 dε

dΘ
= −Θ3 d

2ψ

dΘ2
. (205)

In like manner,

(εq − εq)2 = Θ2dεq
dΘ

= −Θ3 d
2ψq
dΘ2

, (206)

(εp − εp)2 = Θ2dεp
dΘ

= −Θ3 d
2ψp
dΘ2

= 1
2
nΘ2. (207)

Hence
(ε− ε)2 = (εq − εq)2 + (εp − εp)2. (208)

Equation (206) shows that the value of dεq/dΘ can never be nega-
tive, and that the value of d2ψq/dΘ2 or dηq/dΘ can never be posi-
tive.∗

To get an idea of the order of magnitude of these quantities, we
may use the average kinetic energy as a term of comparison, this

∗In the case discussed in the note on page 61, in which the potential energy
is a quadratic function of the q’s, and ∆q̇ independent of the q’s, we should get
for the potential energy

(εq − εq)2 = 1
2nΘ2,

and for the total energy
(ε− ε)2 = nΘ2.
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quantity being independent of the arbitrary constant involved in
the definition of the potential energy. Since

εp = 1
2
nΘ,

(εp − εp)2

ε2p
=

2

n
, (209)

(εq − εq)2

ε2p
=

2

n

dεq
dεp

, (210)

(ε− ε)2

ε2p
=

2

n

dε

dεp
=

2

n
+

2

n

dεq
dεp

. (211)

These equations show that when the number of degrees of free-
dom of the systems is very great, the mean squares of the anomalies
of the energies (total, potential, and kinetic) are very small in com-
parison with the mean square of the kinetic energy, unless indeed
the differential coefficient dεq/dεp is of the same order of magnitude
as n. Such values of dεq/dεp can only occur within intervals (ε′′p−ε′p)
which are of the order of magnitude of n−1, unless it be in cases in
which εq is in general of an order of magnitude higher than εp.
Postponing for the moment the consideration of such cases, it will

We may also write in this case,

(εq − εq)2

(εq − εα)2
=

2

n
,

(ε− ε)2

(ε− εα)2
=

1

n
.
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be interesting to examine more closely the case of large values of
dεq/dεp within narrow limits. Let us suppose that for ε′p and ε′′p the
value of dεq/dεp is of the order of magnitude of unity, but between
these values of εp very great values of the differential coefficient oc-
cur. Then in the ensemble having modulus Θ′′ and average energies
ε′′p and ε′′q , values of εq sensibly greater than ε′′q will be so rare that
we may call them practically negligible. They will be still more rare
in an ensemble of less modulus. For if we differentiate the equation

ηq =
ψq − εq

Θ

regarding εq as constant, but Θ and therefore ψq as variable, we get(
dηq
dΘ

)
εq

=
1

Θ

dψq
dΘ
− ψq − εq

Θ2
, (212)

whence by (192) (
dηq
dΘ

)
εq

=
εq − εq

Θ2
. (213)

That is, a diminution of the modulus will diminish the probability of
all configurations for which the potential energy exceeds its average
value in the ensemble. Again, in the ensemble having modulus Θ′

and average energies ε′p and ε′q, values of εq sensibly less than ε′q
will be so rare as to be practically negligible. They will be still
more rare in an ensemble of greater modulus, since by the same
equation an increase of the modulus will diminish the probability of
configurations for which the potential energy is less than its average
value in the ensemble. Therefore, for values of Θ between Θ′ and Θ′′,
and of εp between ε′p and ε′′p, the individual values of εq will be
practically limited to the interval between ε′q and ε′′q .
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In the cases which remain to be considered, viz., when dεq/dεp
has very large values not confined to narrow limits, and consequently
the differences of the mean potential energies in ensembles of differ-
ent moduli are in general very large compared with the differences
of the mean kinetic energies, it appears by (210) that the anomalies
of mean square of potential energy, if not small in comparison with
the mean kinetic energy, will yet in general be very small in compar-
ison with differences of mean potential energy in ensembles having
moderate differences of mean kinetic energy,—the exceptions being
of the same character as described for the case when dεq/dεp is not
in general large.

It follows that to human experience and observation with respect
to such an ensemble as we are considering, or with respect to systems
which may be regarded as taken at random from such an ensemble,
when the number of degrees of freedom is of such order of magnitude
as the number of molecules in the bodies subject to our observation
and experiment, ε − ε, εp − εp, εq − εq would be in general vanish-
ing quantities, since such experience would not be wide enough to
embrace the more considerable divergencies from the mean values,
and such observation not nice enough to distinguish the ordinary
divergencies. In other words, such ensembles would appear to hu-
man observation as ensembles of systems of uniform energy, and in
which the potential and kinetic energies (supposing that there were
means of measuring these quantities separately) had each separately
uniform values.∗ Exceptions might occur when for particular values
of the modulus the differential coefficient dεq/dεp takes a very large
value. To human observation the effect would be, that in ensembles
in which Θ and εp had certain critical values, εq would be indetermi-

∗This implies that the kinetic and potential energies of individual systems
would each separately have values sensibly constant in time.
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nate within certain limits, viz., the values which would correspond
to values of Θ and εp slightly less and slightly greater than the crit-
ical values. Such indeterminateness corresponds precisely to what
we observe in experiments on the bodies which nature presents to
us.∗

To obtain general formulae for the average values of powers of
the energies, we may proceed as follows. If h is any positive whole
number, we have identically∫

all· · ·
phases

∫
εh e−

ε
Θ dp1 . . . dqn = Θ2 d

dΘ

∫
all· · ·

phases

∫
εh−1 e−

ε
Θ dp1 . . . dqn,

(214)
i.e., by (108),

εh e−
ψ
Θ = Θ2 d

dΘ

(
εh−1 e−

ψ
Θ

)
. (215)

Hence

εh e−
ψ
Θ =

(
Θ2 d

dΘ

)h
e−

ψ
Θ , (216)

and

εh = e
ψ
Θ

(
Θ2 d

dΘ

)h
e−

ψ
Θ . (217)

∗As an example, we may take a system consisting of a fluid in a cylinder
under a weighted piston, with a vacuum between the piston and the top of
the cylinder, which is closed. The weighted piston is to be regarded as a part
of the system. (This is formally necessary in order to satisfy the condition of
the invariability of the external coördinates.) It is evident that at a certain
temperature, viz., when the pressure of saturated vapor balances the weight of
the piston, there is an indeterminateness in the values of the potential and total
energies as functions of the temperature.
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For h = 1, this gives

ε = −Θ2 d

dΘ

(
ψ

Θ

)
, (218)

which agrees with (191).
From (215) we have also

εh = ε εh−1 + Θ2dε
h−1

dΘ
=

(
ε+ Θ2 d

dΘ

)
εh−1, (219)

εh =

(
ε+ Θ2 d

dΘ

)h−1

ε. (220)

In like manner from the identical equation∫
all· · ·

config.

∫
εhq e

−
εq
Θ ∆

1
2
q̇ dq1 . . . dqn

= Θ2 d

dΘ

∫
all· · ·

config.

∫
εh−1
q e−

εq
Θ ∆

1
2
q̇ dq1 . . . dqn, (221)

we get

εhq = e
ψq
Θ

(
Θ2 d

dΘ

)h
e−

ψq
Θ , (222)

and

εhq =

(
εq + Θ2 d

dΘ

)h−1

εq. (223)

With respect to the kinetic energy similar equations will hold
for averages taken for any particular configuration, or for the whole
ensemble. But since

εp =
n

2
Θ,
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the equation

εhp =

(
εp + Θ2 d

dΘ

)
εh−1
p (224)

reduces to

εhp =

(
n

2
Θ + Θ2 d

dΘ

)
εh−1
p =

n

2

(
n

2
Θ + Θ2 d

dΘ

)h−1

Θ. (225)

We have therefore

ε2p =
(n

2
+ 1
) n

2
Θ2. (226)

ε3p =
(n

2
+ 2
)(n

2
+ 1
) n

2
Θ3. (227)

εhp =
Γ(1

2
n+ h)

Γ(1
2
n)

Θh.∗ (228)

∗In the case discussed in the note on page 61 we may easily get

(εq − εα)h =

(
εq − εα + Θ2 d

dΘ

)
(εq − εα)h−1,

which, with

εq − εα =
n

2
Θ,

gives

(εq − εα)h =

(
n

2
Θ + Θ2 d

dΘ

)
(εq − εα)h−1 =

n

2

(
n

2
Θ + Θ2 d

dΘ

)h−1

Θ.

Hence
(εq − εα)h = εhp .

Again

(ε− εα)h =

(
ε− εα + Θ2 d

dΘ

)
(ε− εα)h−1,
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The average values of the powers of the anomalies of the energies
are perhaps most easily found as follows. We have identically, since
ε is a function of Θ, while ε is a function of the p’s and q’s,

Θ2 d

dΘ

∫
all· · ·

phases

∫
(ε− ε)h e−

ε
Θ dp1 . . . dqn

=

∫
all· · ·

phases

∫ [
ε(ε− ε)h − h(ε− ε)h−1Θ2 dε

dΘ

]
e−

ε
Θ dp1 . . . dqn,

(229)

i.e., by (108),

Θ2 d

dΘ

[
(ε− ε)he−

ψ
Θ

]
=

[
ε(ε− ε)h − h(ε− ε)h−1Θ2 dε

dΘ

]
e−

ψ
Θ ,

(230)
or since by (218)

Θ2 d

dΘ
e−

ψ
Θ = ε e−

ψ
Θ ,

Θ2 d

dΘ
(ε− ε)h + (ε− ε)hε = ε(ε− ε)h − h(ε− ε)h−1Θ2 dε

dΘ
,

(ε− ε)h+1 = Θ2 d

dΘ
(ε− ε)h + h(ε− ε)h−1Θ2 dε

dΘ
. (231)

which with
ε− εα = nΘ

gives

(ε− εα)h =

(
nΘ + Θ2 d

dΘ

)
(ε− εα)h−1 = n

(
nΘ + Θ2 d

dΘ

)h−1

Θ,

hence

(ε− εα)h =
Γ(n+ h)

Γ(n)
Θh.
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In precisely the same way we may obtain for the potential energy

(εq − εq)h+1 = Θ2 d

dΘ
(εq − εq)h + h(εq − εq)h−1Θ2dεq

dΘ
. (232)

By successive applications of (231) we obtain

(ε− ε)2 = Dε,

(ε− ε)3 = D2ε,

(ε− ε)4 = D3ε+ 3(Dε)2,

(ε− ε)5 = D4ε+ 10DεD2ε,

(ε− ε)6 = D5ε+ 15DεD3ε+ 10(D2ε)2 + 15(Dε)3 etc.,

where D represents the operator Θ2d/dΘ. Similar expressions re-
lating to the potential energy may be derived from (232).

For the kinetic energy we may write similar equations in which
the averages may be taken either for a single configuration or for
the whole ensemble. But since

dεp
dΘ

=
n

2
,

the general formula reduces to

(εp − εp)h+1 = Θ2 d

dΘ
(εp − εp)h + 1

2
nhΘ2(εp − εp)h−1, (233)

or

(εp − εp)h+1

εh+1
p

=
2Θ

n

d

dΘ

(εp − εp)h
εhp

+
2h

n

(εp − εp)h
εhp

+
2h

n

(εp − εp)h−1

εh−1
p

.

(234)
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But since identically

(εp − εp)0

ε0p
= 1,

(εp − εp)1

ε1p
= 0,

the value of the corresponding expression for any index will be in-
dependent of Θ and the formula reduces to(

εp − εp
εp

)h+1

=
2h

n

(
εp − εp
εp

)h
+

2h

n

(
εp − εp
εp

)h−1

; (235)

we have therefore(
εp − εp
εp

)0

= 1,(
εp − εp
εp

)1

= 0,(
εp − εp
εp

)2

=
2

n
,

(
εp − εp
εp

)3

=
8

n2
,(

εp − εp
εp

)4

=
48

n3
+

12

n2
,

etc.∗

It will be observed that when ψ or ε is given as function of Θ,
all averages of the form εh or (ε− ε)h are thereby determined. So
also if ψq or εq is given as a function of Θ, all averages of the form

εhq or (εq − εq)h are determined. But

εq = ε− 1
2
nΘ.

∗In the case discussed in the preceding foot-notes we get easily

(εq − εq)h = (εp − εp)h,

and (
εq − εq
εq − εα

)h
=

(
εp − εp
εp

)h
.
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Therefore if any one of the quantities ψ, ψq, ε, εq is known as a
function of Θ, and n is also known, all averages of any of the forms
mentioned are thereby determined as functions of the same variable.
In any case all averages of the form(

εp − εp
εp

)h
are known in terms of n alone, and have the same value whether
taken for the whole ensemble or limited to any particular configu-
ration.

If we differentiate the equation∫
all· · ·

phases

∫
e
ψ−ε
Θ dp1 . . . dqn = 1 (236)

with respect to a1, and multiply by Θ, we have∫
· · ·
∫ [

dψ

da1

− dε

da1

]
e
ψ−ε
Θ dp1 . . . dqn = 0. (237)

Differentiating again, with respect to a1, with respect to a2, and

For the total energy we have in this case(
ε− ε
ε− εα

)h+1

=
h

n

(
ε− ε
ε− εα

)h
+
h

n

(
ε− ε
ε− εα

)h−1

,

(
ε− ε
ε− εα

)2

=
1

n
,(

ε− ε
ε− εα

)3

=
2

n2
,

(
ε− ε
ε− εα

)4

=
3

n2
+

6

n3
,

etc.
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with respect to Θ, we have∫
· · ·
∫ [

d2ψ

da2
1

− d2ε

da2
1

+
1

Θ

(
dψ

da1

− dε

da1

)2
]
e
ψ−ε
Θ dp1 . . . dqn = 0,

(238)∫
· · ·
∫ [

d2ψ

da1 da2

− d2ε

da1 da2

+
1

Θ

(
dψ

da1

− dε

da1

)(
dψ

da2

− dε

da2

)]
e
ψ−ε
Θ dp1 . . . dqn = 0, (239)∫

· · ·
∫ [

d2ψ

da1 dΘ
+

(
dψ

da1

− dε

da1

)(
1

Θ

dψ

dΘ
− ψ − ε

Θ2

)]
e
ψ−ε
Θ dp1 . . . dqn = 0. (240)

The multiple integrals in the last four equations represent the aver-
age values of the expressions in the brackets, which we may therefore
set equal to zero. The first gives

dψ

da1

=
dε

da1

= −A1, (241)

as already obtained. With this relation and (191) we get from the
other equations

(A1 − A1)2 = Θ

(
d2ε

da2
1

− d2ψ

da2
1

)
= Θ

(
dA1

da1

− dA1

da1

)
, (242)

(A1 − A1)(A2 − A2) = Θ

(
d2ε

da1 da2

− d2ψ

da1 da2

)
= Θ

(
dA1

da2

− dA1

da2

)
= Θ

(
dA2

da1

− dA2

da1

)
, (243)



statistical mechanics 96

(A1 − A1)(ε− ε) = −Θ2 d2ψ

da1 dΘ
= Θ2dA1

dΘ
= −Θ2 dη

da1

.

We may add for comparison equation (205), which might be derived
from (236) by differentiating twice with respect to Θ:

(ε− ε)2 = −Θ2 d
2ψ

dΘ2
= Θ2 dε

dΘ
. (244)

The two last equations give

(A1 − A1)(ε− ε) =
dA

dε
(ε− ε)2. (245)

If ψ or ε is known as function of Θ, a1, a2, etc., (ε− ε)2

may be obtained by differentiation as function of the same vari-
ables. And if ψ, or A1, or η is known as function of Θ, a1,

etc., (A1 − A1)(ε− ε) may be obtained by differentiation. But

(A1 − A1)2 and (A1 − A1)(A2 − A2) cannot be obtained in any
similar manner. We have seen that (ε− ε)2 is in general a van-
ishing quantity for very great values of n, which we may regard
as contained implicitly in Θ as a divisor. The same is true of

(A1 − A1)(ε− ε). It does not appear that we can assert the same

of (A1 − A1)2 or (A1 − A1)(A2 − A2), since d2ε/da2
1 may be very

great. The quantities d2ε/da2
1 and d2ψ/da2

1 belong to the class
called elasticities. The former expression represents an elasticity
measured under the condition that while a1 is varied the internal
coördinates q1, . . . qn all remain fixed. The latter is an elasticity
measured under the condition that when a1 is varied the ensemble
remains canonically distributed within the same modulus. This cor-
responds to an elasticity in physics measured under the condition
of constant temperature. It is evident that the former is greater
than the latter, and it may be enormously greater.
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The divergences of the force A1 from its average value are due
in part to the differences of energy in the systems of the ensemble,
and in part to the differences in the value of the forces which exist
in systems of the same energy. If we write A1 |ε for the average value
of A1 in systems of the ensemble which have any same energy, it
will be determined by the equation

A1 |ε =

∫
· · ·
∫
− dε

da1

e
ψ−ε
Θ dp1 . . . dqn∫

· · ·
∫
e
ψ−ε
Θ dp1 . . . dqn

, (246)

where the limits of integration in both multiple integrals are two
values of the energy which differ infinitely little, say ε and ε + dε.

This will make the factor e
ψ−ε
Θ constant within the limits of integra-

tion, and it may be cancelled in the numerator and denominator,
leaving

A1 |ε =

∫
· · ·
∫
− dε

da1

dp1 . . . dqn∫
· · ·
∫
dp1 . . . dqn

, (247)

where the integrals as before are to be taken between ε and ε+ dε.
A1 |ε is therefore independent of Θ, being a function of the energy
and the external coördinates.

Now we have identically

A1 − A1 = (A1 − A1 |ε) + (A1 |ε − A1),

where A1 − A1 |ε denotes the excess of the force (tending to in-
crease a1) exerted by any system above the average of such forces
for systems of the same energy. Accordingly,

(A1 − A1)2 = (A1 − A1 |ε)2+2(A1 − A1 |ε)(A1 |ε − A1)+(A1 |ε − A1)2.
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But the average value of (A1 − A1 |ε)(A1 |ε − A1) for systems of the
ensemble which have the same energy is zero, since for such systems
the second factor is constant. Therefore the average for the whole
ensemble is zero, and

(A1 − A1)2 = (A1 − A1 |ε)2 + (A1 |ε − A1)2. (248)

In the same way it may be shown that

(A1 − A1)(ε− ε) = (A1 |ε − A1)(ε− ε). (249)

It is evident that in ensembles in which the anomalies of energy ε−ε
may be regarded as insensible the same will be true of the quantities
represented by A1 |ε − A1.

The properties of quantities of the form A1 |ε will be farther
considered in Chapter X, which will be devoted to ensembles of
constant energy.

It may not be without interest to consider some general formulae
relating to averages in a canonical ensemble, which embrace many
of the results which have been given in this chapter.

Let u be any function of the internal and external coördinates
with the momenta and modulus. We have by definition

u =

∫
all· · ·

phases

∫
u e

ψ−ε
Θ dp1 . . . dqn. (250)

If we differentiate with respect to Θ, we have

du

dΘ
=

∫
all· · ·

phases

∫ (
du

dΘ
− u

Θ2
(ψ − ε) +

u

Θ

dψ

dΘ

)
e
ψ−ε
Θ dp1 . . . dqn,

or
du

dΘ
=
du

dΘ
− u(ψ − ε)

Θ2
+
u

Θ

dψ

dΘ
. (251)
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Setting u = 1 in this equation, we get

dψ

dΘ
=
ψ − ε

Θ
,

and substituting this value, we have

du

dΘ
=
du

dΘ
+
uε

Θ2
− uε

Θ2
,

or

Θ2 du

dΘ
−Θ2 du

dΘ
= uε− uε = (u− u)(ε− ε). (252)

If we differentiate equation (250) with respect to a (which may
represent any of the external coördinates), and write A for the

force − dε
da

, we get

du

da
=

∫
all· · ·

phases

∫ (
du

da
+
u

Θ

dψ

da
+
u

Θ
A

)
e
ψ−ε
Θ dp1 . . . dqn,

or
du

da
=
du

da
+
u

Θ

dψ

da
+
uA

Θ
. (253)

Setting u = 1 in this equation, we get

dψ

da
= −A.

Substituting this value, we have

du

da
=
du

da
+
uA

Θ
− uA

Θ
, (254)

or

Θ
du

da
−Θ

du

da
= uA− uA = (u− u)(A− A). (255)
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Repeated applications of the principles expressed by equations
(252) and (255) are perhaps best made in the particular cases. Yet
we may write (252) in this form

(ε+D)(u− u), (256)

where D represents the operator Θ2d/dΘ.
Hence

(ε+D)h(u− u) = 0, (257)

where h is any positive whole number. It will be observed, that since
ε is not function of Θ, (ε + D)h may be expanded by the binomial
theorem. Or, we may write

(ε+D)u = (ε+D)u, (258)

whence
(ε+D)hu = (ε+D)hu. (259)

But the operator (ε + D)h, although in some respects more simple
than the operator without the average sign on the ε, cannot be
expanded by the binomial theorem, since ε is a function of Θ with
the external coördinates.

So from equation (254) we have(
A

Θ
+

d

da

)
(u− u) = 0, (260)

whence (
A

Θ
+

d

da

)h
(u− u) = 0; (261)

and (
A

Θ
+

d

da

)
u =

(
A

Θ
+

d

da

)
u, (262)
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whence (
A

Θ
+

d

da

)h
u =

(
A

Θ
+

d

da

)h
u. (263)

The binomial theorem cannot be applied to these operators.
Again, if we now distinguish, as usual, the several external

coördinates by suffixes, we may apply successively to the expres-
sion u− u any or all of the operators

ε+ Θ2 d

dΘ
, A1 + Θ

d

da1

, A2 + Θ
d

da2

, etc. (264)

as many times as we choose, and in any order, the average value
of the result will be zero. Or, if we apply the same operators to u,
and finally take the average value, it will be the same as the value
obtained by writing the sign of average separately as u, and on ε,
A1, A2, etc., in all the operators.

If u is independent of the momenta, formulae similar to the
preceding, but having εq in place of ε, may be derived from equa-
tion (179).



VIII.

ON CERTAIN IMPORTANT FUNCTIONS OF THE ENERGIES
OF A SYSTEM.

In order to consider more particularly the distribution of a canonical
ensemble in energy, and for other purposes, it will be convenient to
use the following definitions and notations.

Let us denote by V the extension-in-phase below a certain limit
of energy which we shall call ε. That is, let

V =

∫
· · ·
∫
dp1 . . . dqn, (265)

the integration being extended (with constant values of the external
coördinates) over all phases for which the energy is less than the
limit ε. We shall suppose that the value of this integral is not
infinite, except for an infinite value of the limiting energy. This will
not exclude any kind of system to which the canonical distribution
is applicable. For if ∫

· · ·
∫
e−

ε
Θ dp1 . . . dqn

taken without limits has a finite value,∗ the less value represented
by

e−
ε
Θ

∫
· · ·
∫
dp1 . . . dqn

taken below a limiting value of ε, and with the ε before the integral
sign representing that limiting value, will also be finite. Therefore

∗This is a necessary condition of the canonical distribution. See Chapter IV,
p. 39.
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the value of V , which differs only by a constant factor, will also be
finite, for finite ε. It is a function of ε and the external coördinates,
a continuous increasing function of ε, which becomes infinite with ε,
and vanishes for the smallest possible value of ε, or for ε = −∞, if
the energy may be diminished without limit.

Let us also set

φ = log
dV

dε
. (266)

The extension in phase between any two limits of energy, ε′ and ε′′,
will be represented by the integral∫ ε′′

ε′
eφ dε. (267)

And in general, we may substitute eφ dε for dp1 . . . dqn in a 2n-fold
integral, reducing it to a simple integral, whenever the limits can
be expressed by the energy alone, and the other factor under the
integral sign is a function of the energy alone, or with quantities
which are constant in the integration.

In particular we observe that the probability that the energy
of an unspecified system of a canonical ensemble lies between the
limits ε′ and ε′′ will be represented by the integral∗∫ ε′′

ε′
e
ψ−ε
Θ

+φ dε, (268)

and that the average value in the ensemble of any quantity which
only varies with the energy is given by the equation†

u =

∫ ε=∞

V=0

u e
ψ−ε
Θ

+φ dε, (269)

∗Compare equation (93).
†Compare equation (108).
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where we may regard the constant ψ as determined by the equation∗

e−
ψ
Θ =

∫ ε=∞

V=0

e−
ε
Θ

+φ dε. (270)

In regard to the lower limit in these integrals, it will be observed
that V = 0 is equivalent to the condition that the value of ε is the
least possible.

In like manner, let us denote by Vq the extension-in-configuration
below a certain limit of potential energy which we may call εq. That
is, let

Vq =

∫
· · ·
∫

∆
1
2
q̇ dq1 . . . dqn, (271)

the integration being extended (with constant values of the external
coördinates) over all configurations for which the potential energy is
less than εq. Vq will be a function of εq with the external coördinates,
an increasing function of εq, which does not become infinite (in such
cases as we shall consider†) for any finite value of εq. It vanishes for
the least possible value of εq, or for εq = −∞, if εq can be dimin-
ished without limit. It is not always a continuous function of εq.
In fact, if there is a finite extension-in-configuration of constant po-
tential energy, the corresponding value of Vq will not include that
extension-in-configuration, but if εq be increased infinitesimally, the
corresponding value of Vq will be increased by that finite extension-
in-configuration.

Let us also set

φq = log
dVq
dεq

. (272)

∗Compare equation (92).
†If Vq were infinite for finite values of εq, V would evidently be infinite for

finite values of ε.
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The extension-in-configuration between any two limits of potential
energy ε′q and ε′′q may be represented by the integral∫ ε′′q

ε′q

eφq dεq (273)

whenever there is no discontinuity in the value of Vq as function
of εq between or at those limits, that is, whenever there is no finite
extension-in-configuration of constant potential energy between or
at the limits. And in general, with the restriction mentioned, we

may substitute eφq dεq for ∆
1
2
q̇ dq1 . . . dqn in an n-fold integral, re-

ducing it to a simple integral, when the limits are expressed by
the potential energy, and the other factor under the integral sign is
a function of the potential energy, either alone or with quantities
which are constant in the integration.

We may often avoid the inconvenience occasioned by formulae
becoming illusory on account of discontinuities in the values of Vq as
function of εq by substituting for the given discontinuous function
a continuous function which is practically equivalent to the given
function for the purposes of the evaluations desired. It only re-
quires infinitesimal changes of potential energy to destroy the finite
extensions-in-configuration of constant potential energy which are
the cause of the difficulty.

In the case of an ensemble of systems canonically distributed
in configuration, when Vq is, or may be regarded as, a continuous
function of εq (within the limits considered), the probability that
the potential energy of an unspecified system lies between the limits
ε′q and ε′′q is given by the integral∫ ε′′q

ε′q

e
ψq−εq

Θ
+φq dεq, (274)
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where ψ may be determined by the condition that the value of the
integral is unity, when the limits include all possible values of εq. In
the same case, the average value in the ensemble of any function of
the potential energy is given by the equation

u =

∫ εq=∞

Vq=0

u e
ψ−εq

Θ
+φq dεq. (275)

When Vq is not a continuous function of εq, we may write dVq for
eφq dεq in these formulae.

In like manner also, for any given configuration, let us denote
by Vp the extension-in-velocity below a certain limit of kinetic en-
ergy specified by εp. That is, let

Vp =

∫
· · ·
∫

∆
1
2
p dp1 . . . dpn, (276)

the integration being extended, with constant values of the coörd-
inates, both internal and external, over all values of the momenta for
which the kinetic energy is less than the limit εp. Vp will evidently be
a continuous increasing function of εp which vanishes and becomes
infinite with εp. Let us set

φp = log
dVp
dεp

. (277)

The extension-in-velocity between any two limits of kinetic energy
ε′p and ε′′p may be represented by the integral∫ ε′′p

ε′p

eφp dεp. (278)
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And in general, we may substitute eφp dεp for ∆
1
2
p dp1 . . . dpn or

∆
1
2
q̇ dq̇1 . . . dq̇n in an n-fold integral in which the coördinates are con-

stant, reducing it to a simple integral, when the limits are expressed
by the kinetic energy, and the other factor under the integral sign
is a function of the kinetic energy, either alone or with quantities
which are constant in the integration.

It is easy to express Vp and φp in terms of εp. Since ∆p is function
of the coördinates alone, we have by definition

Vp = ∆
1
2
p

∫
· · ·
∫
dp1 . . . dpn (279)

the limits of the integral being given by εp. That is, if

εp = F (p1, . . . pn), (280)

the limits of the integral for εp = 1, are given by the equation

F (p1, . . . pn) = 1, (281)

and the limits of the integral for εp = a2, are given by the equation

F (p1, . . . pn) = a2. (282)

But since F represents a quadratic function, this equation may be
written

F
(p1

a
, . . .

pn
a

)
= 1. (283)

The value of Vp may also be put in the form

Vp = an ∆
1
2
p

∫
· · ·
∫
d
p1

a
. . . d

pn
a
. (284)
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Now we may determine Vp for εp = 1 from(279) where the limits
are expressed by (281), and Vp for εp = a2 from (284) taking the
limits from (283). The two integrals thus determined are evidently
identical, and we have

(Vp)εp=a2 = an(Vp)εp=1, (285)

i.e., Vp varies as ε
n
2
p . We may therefore set

Vp = Cε
n
2
p , eφp =

n

2
Cε

n
2
−1

p (286)

where C is a constant, at least for fixed values of the internal
coördinates.

To determine this constant, let us consider the case of a canonical
distribution, for which we have∫ ∞

0

e
ψp−εp

Θ
+φp dεp = 1,

where

e
ψp
Θ = (2πΘ)−

n
2 .

Substituting this value, and that of eφp from (286), we get

n

2
C

∫ ∞
0

e−
εp
Θ ε

n
2
−1

p dεp = (2πΘ)
n
2 ,

n

2
C

∫ ∞
0

e−
εp
Θ

(εp
Θ

)n
2
−1

d
(εp

Θ

)
= (2π)

n
2 ,

n

2
CΓ
(n

2

)
= (2π)

n
2 , (287)

C =
(2π)

n
2

Γ(1
2
n+ 1)

.
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Having thus determined the value of the constant C, we may
substitute it in the general expressions (286), and obtain the fol-
lowing values, which are perfectly general:

Vp =
(2πεp)

n
2

Γ(1
2
n+ 1)

, (288)

eφp =
(2π)

n
2 ε

n
2
−1

p

Γ(1
2
n)

.∗ (289)

It will be observed that the values of Vp and φp for any given εp
are independent of the configuration, and even of the nature of the
system considered, except with respect to its number of degrees of
freedom.

Returning to the canonical ensemble, we may express the prob-
ability that the kinetic energy of a system of a given configuration,

∗Very similar values for Vq, e
φq , V , and eφ may be found in the same way

in the case discussed in the preceding foot-notes (see pages 61, 84, 90, and 93),
in which εq is a quadratic function of the q’s, and ∆q̇ independent of the q’s.
In this case we have

Vq =

(
∆q̇

∆q

) 1
2 (2π)

n
2 (εq − εα)

n
2

Γ( 1
2n+ 1)

,

eφq =

(
∆q̇

∆q

) 1
2 (2π)

n
2 (εq − εα)

n
2−1

Γ( 1
2n)

,

V =

(
∆q̇

∆q

) 1
2 (2π)n(ε− εα)n

Γ(n+ 1)
,

eφ =

(
∆q̇

∆q

) 1
2 (2π)n(ε− εα)n−1

Γ(n)
.
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but otherwise unspecified, falls within given limits, by either mem-
ber of the following equation∫

e
ψp−εp

Θ
+φp dεp =

1

Γ(1
2
n)

∫
e−

εp
Θ

(εp
Θ

)n
2
−1

d
(εp

Θ

)
. (290)

Since this value is independent of the coördinates it also represents
the probability that the kinetic energy of an unspecified system of
a canonical ensemble falls within the limits. The form of the last
integral also shows that the probability that the ratio of the kinetic
energy to the modulus falls within given limits is independent also of
the value of the modulus, being determined entirely by the number
of degrees of freedom of the system and the limiting values of the
ratio.

The average value of any function of the kinetic energy, either
for the whole ensemble, or for any particular configuration, is given
by

u =
1

Θ
n
2 Γ(1

2
n)

∫ ∞
0

u e−
εp
Θ ε

n
2
−1

p dεp.
∗ (291)

∗The corresponding equation for the average value of any function of the
potential energy, when this is a quadratic function of the q’s, and ∆q̇ is inde-
pendent of the q’s, is

u =
1

Θ
n
2 Γ( 1

2n)

∫ ∞
εα

u e−
εq−εα

Θ (εq − εα)
n
2−1 dεq.

In the same case, the average value of any function of the (total) energy is given
by the equation

u =
1

ΘnΓ(n)

∫ ∞
0

u e−
ε−εα

Θ (ε− εα)n−1 dε.
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Thus:

εmp =
Γ(m+ 1

2
n)

Γ(1
2
n)

Θm, if m+ 1
2
n > 0;∗ (292)

V p =
Γ(n)

Γ(1
2
n+ 1)Γ(1

2
n)

(2πΘ)
n
2 ; (293)

eφp =
Γ(n− 1)

[Γ(1
2
n)]2

(2π)
n
2 Θ

n
2
−1, if n > 1; (294)

dφp
dεp

=
1

Θ
, if n > 2; (295)

e−φp Vp = Θ. (296)

Hence in this case

(εq − εα)m =
Γ(m+ 1

2n)

Γ( 1
2n)

Θm, if m+ 1
2n > 0.

(ε− εα)m =
Γ(m+ n)

Γ(n)
Θm, if m+ n > 0.

e−φq Vq = e−φ V = Θ,

dφq
dεq

=
1

Θ
, if n > 2,

and

dφ

dε
=

1

Θ
, if n > 1.

If n = 1, eφ = 2π and dφ/dε = 0 for any value of ε. If n = 2, the case is the
same with respect to φq.

∗This equation has already been proved for positive integral powers of the
kinetic energy. See page 90.
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If n = 2, eφp = 2π, and dφp/dεp = 0, for any value of εp.
The definitions of V , Vq, and Vp give

V =

∫∫
dVp dVq, (297)

where the integrations cover all phases for which the energy is less
than the limit ε, for which the value of V is sought. This gives

V =

∫ εq=ε

Vq=0

Vp dVq, (298)

and

eφ =
dV

dε
=

∫ εq=ε

Vq=0

eφp dVq, (299)

where Vp and eφp are connected with Vq by the equation

εp + εq = constant = ε. (300)

If n > 2, eφp vanishes at the upper limit, i.e., for εp = 0, and we
get by another differentiation

eφ
dφ

dε
=

∫ εq=ε

Vq=0

eφp
dφp
dεp

dVq. (301)

We may also write

V =

∫ εq=ε

Vq=0

Vp e
φq dεq, (302)

eφ =

∫ εq=ε

Vq=0

eφp+φq dεq, (303)
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etc., when Vq is a continuous function of εq commencing with the
value Vq = 0, or when we choose to attribute to Vq a fictitious con-
tinuity commencing with the value zero, as described on page 105.

If we substitute in these equations the values of Vp and eφp which
we have found, we get

V =
(2π)

n
2

Γ(1
2
n+ 1)

∫ εq=ε

Vq=0

(ε− εq)
n
2 dVq, (304)

eφ =
(2π)

n
2

Γ(1
2
n)

∫ εq=ε

Vq=0

(ε− εq)
n
2
−1 dVq, (305)

where eφq dεq may be substituted for dVq in the cases above de-
scribed. If, therefore, n is known, and Vq as function of εq, V and eφ

may be found by quadratures.
It appears from these equations that V is always a continuous

increasing function of ε, commencing with the value V = 0, even
when this is not the case with respect to Vq and εq. The same is
true of eφ, when n > 2, or when n = 2 if Vq increases continuously
with εq from the value Vq = 0.

The last equation may be derived from the preceding by dif-
ferentiation with respect to ε. Successive differentiations give, if
h < 1

2
n+ 1,

dhV

dεh
=

∫ εq=ε

Vq=0

dhVp
dεhp

dVq =
(2π)

n
2

Γ(1
2
n+ 1− h)

∫ εq=ε

Vq=0

(ε− εq)
n
2
−h dVq.

(306)
dhV/dεh is therefore positive if h < 1

2
n + 1. It is an increasing

function of ε, if h < 1
2
n. If ε is not capable of being diminished

without limit, dhV/dεh vanishes for the least possible value of ε, if
h < 1

2
n.
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If n is even,

d
n
2 V

dε
n
2

= (2π)
n
2 (Vq)εq=ε. (307)

That is, Vq is the same function of εq as
1

(2π)
n
2

d
n
2 V

dε
n
2

of ε.

When n is large, approximate formulae will be more available. It
will be sufficient to indicate the method proposed, without precise
discussion of the limits of its applicability or of the degree of its
approximation. For the value of eφ corresponding to any given ε,
we have

eφ =

∫ εq=ε

Vq=0

eφp+φq dεq =

∫ ε

0

eφp+φq dεp, (308)

where the variables are connected by the equation (300). The max-
imum value of φp + φq is therefore characterized by the equation

dφp
dεp

=
dφq
dεq

. (309)

The values of εp and εq determined by this maximum we shall dis-
tinguish by accents, and mark the corresponding values of functions
of εp and εq in the same way. Now we have by Taylor’s theorem

φp = φ′p +

(
dφp
dεp

)′
(εp − ε′p) +

(
d2φp
dε2p

)′ (εp − ε′p)2

2
+ etc. (310)

φq = φ′q +

(
dφq
dεq

)′
(εq − ε′q) +

(
d2φq
dε2q

)′ (εq − ε′q)2

2
+ etc. (311)

If the approximation is sufficient without going beyond the quadratic
terms, since by (300)

εp − εp′ = −(εq − ε′q),
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we may write

eφ = eφ
′
p+φ′q

∫ ∞
−∞

e

[(
d2φ′p
dε2p

)′

+

(
d2φ′q
dε2q

)′]
(εq−ε′q)2

2
dεq, (312)

where the limits have been made ±∞ for analytical simplicity. This
is allowable when the quantity in the square brackets has a very
large negative value, since the part of the integral corresponding
to other than very small values of εq − ε′q may be regarded as a
vanishing quantity.

This gives

eφ = eφ
′
p+φ′q

[
−2π(

d2φ′p
dε2p

)′
+

(
d2φ′q
dε2q

)′
] 1

2

, (313)

or

φ = φ′p + φ′q + 1
2

log(2π)− 1
2

log

[
−
(
d2φ′p
dε2p

)′
−
(
d2φ′q
dε2q

)′]
. (314)

From this equation, with (289), (300) and (309), we may determine
the value of φ corresponding to any given value of ε, when φq is
known as function of εq.

Any two systems may be regarded as together forming a third
system. If we have V or φ given as function of ε for any two systems,
we may express by quadratures V and φ for the system formed by
combining the two. If we distinguish by the suffixes ( )1, ( )2, ( )12

the quantities relating to the three systems, we have easily from the
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definitions of these quantities

V12 =

∫∫
dV1 dV2 =

∫
V2 dV1 =

∫
V1 dV2 =

∫
V1e

φ2 dε2, (315)

eφ12 =

∫
eφ2 dV1 =

∫
eφ1 dV2 =

∫
eφ1+φ2 dε2, (316)

where the double integral is to be taken within the limits

V1 = 0, V2 = 0, and ε1 + ε2 = ε12,

and the variables in the single integrals are connected by the last of
these equations, while the limits are given by the first two, which
characterize the least possible values of ε1 and ε2 respectively.

It will be observed that these equations are identical in form
with those by which V and φ are derived from Vp or φp and Vq or
φq, except that they do not admit in the general case those transfor-
mations which result from substituting for Vp or φp the particular
functions which these symbols always represent.

Similar formulae may be used to derive Vq or φq for the com-
pound system, when one of these quantities is known as function of
the potential energy in each of the systems combined.

The operation represented by such an equation as

eφ12 =

∫
eφ1eφ2 dε1

is identical with one of the fundamental operations of the theory
of errors, viz., that of finding the probability of an error from the
probabilities of partial errors of which it is made up. It admits a
simple geometrical illustration.

We may take a horizontal line as an axis of abscissas, and
lay off ε1 as an abscissa measured to the right of any origin, and
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erect eφ1 as a corresponding ordinate, thus determining a certain
curve. Again, taking a different origin, we may lay off ε2 as abscissas
measured to the left, and determine a second curve by erecting the
ordinates eφ2 . We may suppose the distance between the origins
to be ε12, the second origin being to the right if ε12 is positive.
We may determine a third curve by erecting at every point in the
line (between the least values of ε1 and ε2) an ordinate which rep-
resents the product of the two ordinates belonging to the curves
already described. The area between this third curve and the axis
of abscissas will represent the value of eφ12 . To get the value of
this quantity for varying values of ε12, we may suppose the first
two curves to be rigidly constructed, and to be capable of being
moved independently. We may increase or diminish ε12 by moving
one of these curves to the right or left. The third curve must be
constructed anew for each different value of ε12.



IX.

THE FUNCTION φ AND THE CANONICAL DISTRIBUTION.

In this chapter we shall return to the consideration of the canonical
distribution, in order to investigate those properties which are espe-
cially related to the function of the energy which we have denoted
by φ.

If we denote by N , as usual, the total number of systems in the
ensemble,

N e
ψ−ε
Θ

+φ dε

will represent the number having energies between the limits ε and
ε+ dε. The expression

N e
ψ−ε
Θ

+φ (317)

represents what may be called the density-in-energy. This vanishes
for ε =∞, for otherwise the necessary equation∫ ε=∞

V=0

e
ψ−ε
Θ

+φ dε = 1 (318)

could not be fulfilled. For the same reason the density-in-energy
will vanish for ε = −∞, if that is a possible value of the energy.
Generally, however, the least possible value of the energy will be a
finite value, for which, if n > 2, eφ will vanish,∗ and therefore the
density-in-energy. Now the density-in-energy is necessarily positive,
and since it vanishes for extreme values of the energy if n > 2, it
must have a maximum in such cases, in which the energy may be
said to have its most common or most probable value, and which is

∗See page 113.
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determined by the equation

dφ

dε
=

1

Θ
. (319)

This value of dφ/dε is also, when n > 2, its average value in the
ensemble. For we have identically, by integration by parts,∫ ε=∞

V=0

dφ

dε
e
ψ−ε
Θ

+φ dε =

[
e
ψ−ε
Θ

+φ

]ε=∞
V=0

+
1

Θ

∫ ε=∞

V=0

e
ψ−ε
Θ

+φ dε. (320)

If n > 2, the expression in the brackets, which multiplied by N
would represent the density-in-energy, vanishes at the limits, and
we have by (269) and (318)

dφ

dε
=

1

Θ
. (321)

It appears, therefore, that for systems of more than two degrees
of freedom, the average value of dφ/dε in an ensemble canonically
distributed is identical with the value of the same differential coef-
ficient as calculated for the most common energy in the ensemble,
both values being reciprocals of the modulus.

Hitherto, in our consideration of the quantities V , Vq, Vp, φ,
φq, φp, we have regarded the external coördinates as constant. It
is evident, however, from their definitions that V and φ are in gen-
eral functions of the external coördinates and the energy (ε), that
Vq and φq are in general functions of the external coördinates and
the potential energy (εq). Vp and φp we have found to be functions
of the kinetic energy (εp) alone. In the equation

e−
ψ
Θ =

∫ ε=∞

V=0

e−
ε
Θ

+φ dε, (322)
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by which ψ may be determined, Θ and the external coördinates
(contained implicitly in φ) are constant in the integration. The
equation shows that ψ is a function of these constants. If their
values are varied, we shall have by differentiation, if n > 2,

e−
ψ
Θ

(
− 1

Θ
dψ +

ψ

Θ2
dΘ

)
=

1

Θ2
dΘ

∫ ε=∞

V=0

ε e−
ε
Θ

+φ dε

+ da1

∫ ε=∞

V=0

dφ

da1

e−
ε
Θ

+φ dε+ da2

∫ ε=∞

V=0

dφ

da2

e−
ε
Θ

+φ dε+ etc., (323)

(Since eφ vanishes with V , when n > 2, there are no terms due to
the variations of the limits.) Hence by (269)

− 1

Θ
dψ +

ψ

Θ2
dΘ =

ε

Θ2
dΘ +

dφ

da1

da1 +
dφ

da2

da2 + etc., (324)

or, since

ψ − ε
Θ

= η, (325)

dψ = η dΘ−Θ
dφ

da1

da1 −Θ
dφ

da2

da2 − etc. (326)

Comparing this with (112), we get

dφ

da1

=
A1

Θ
,

dφ

da2

=
A2

Θ
, etc. (327)
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The first of these equations might be written∗(
dφ

da1

)
ε,a

= −
(
dφ

dε

)
a

(
dε

da1

)
a,q

(328)

but must not be confounded with the equation(
dφ

da1

)
ε,a

= −
(
dφ

dε

)
a

(
dε

da1

)
φ,a

(329)

which is derived immediately from the identity(
dφ

da1

)
ε,a

= −
(
dφ

dε

)
a

(
dε

da1

)
φ,a

. (330)

Moreover, if we eliminate dψ from (326) by the equation

dψ = Θ dη + η dΘ + dε, (331)

obtained by differentiating (325), we get

dε = −Θ dη −Θ
dφ

da1

da1 −Θ
dφ

da2

da2 − etc., (332)

or by (321),

−dη =
dφ

dε
dε+

dφ

da1

da1 +
dφ

da2

da2 + etc. (333)

∗See equations (321) and (104). Suffixes are here added to the differential
coefficients, to make the meaning perfectly distinct, although the same quanti-
ties may be written elsewhere without the suffixes, when it is believed that there
is no danger of misapprehension. The suffixes indicate the quantities which are
constant in the differentiation, the single letter a standing for all the letters a1,
a2, etc., or all except the one which is explicitly varied.
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Except for the signs of average, the second member of this equation
is the same as that of the identity

dφ =
dφ

dε
dε+

dφ

da1

da1 +
dφ

da2

da2 + etc. (334)

For the more precise comparison of these equations, we may sup-
pose that the energy in the last equation is some definite and fairly
representative energy in the ensemble. For this purpose we might
choose the average energy. It will perhaps be more convenient to
choose the most common energy, which we shall denote by ε0. The
same suffix will be applied to functions of the energy determined
for this value. Our identity then becomes

dφ0 =

(
dφ

dε

)
0

dε0 +

(
dφ

da1

)
0

da1 +

(
dφ

da2

)
0

da2 + etc. (335)

It has been shown that

dφ

dε
=

(
dφ

dε

)
0

=
1

Θ
, (336)

when n > 2. Moreover, since the external coördinates have con-
stant values throughout the ensemble, the values of dφ/da1, dφ/da2,
etc. vary in the ensemble only on account of the variations of the
energy (ε), which, as we have seen, may be regarded as sensibly
constant throughout the ensemble, when n is very great. In this
case, therefore, we may regard the average values

dφ

da1

,
dφ

da2

, etc.,

as practically equivalent to the values relating to the most common
energy (

dφ

da1

)
0

,

(
dφ

da2

)
0

, etc.
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In this case also dε is practically equivalent to dε0. We have there-
fore, for very large values of n,

−dη = dφ0 (337)

approximately. That is, except for an additive constant, −η may
be regarded as practically equivalent to φ0, when the number of
degrees of freedom of the system is very great. It is not meant by
this that the variable part of η + φ0 is numerically of a lower order
of magnitude than unity. For when n is very great, −η and φ0 are
very great, and we can only conclude that the variable part of η+φ0

is insignificant compared with the variable part of η or of φ0, taken
separately.

Now we have already noticed a certain correspondence between
the quantities Θ and η and those which in thermodynamics are
called temperature and entropy. The property just demonstrated,
with those expressed by equation (336), therefore suggests that the
quantities φ and dε/dφ may also correspond to the thermodynamic
notions of entropy and temperature. We leave the discussion of
this point to a subsequent chapter, and only mention it here to
justify the somewhat detailed investigation of the relations of these
quantities.

We may get a clearer view of the limiting form of the relations
when the number of degrees of freedom is indefinitely increased, if
we expand the function φ in a series arranged according to ascending
powers of ε− ε0. This expansion may be written

φ = φ0+

(
dφ

dε

)
0

(ε−ε0)+

(
d2φ

dε2

)
0

(ε− ε0)2

2
+

(
d3φ

dε3

)
0

(ε− ε0)3

3!
+etc.

(338)
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Adding the identical equation

ψ − ε
Θ

=
ψ − ε0

Θ
− ε− ε0

Θ
,

we get by (336)

ψ − ε
Θ

+φ =
ψ − ε0

Θ
+φ0+

(
d2φ

dε2

)
0

(ε− ε0)2

2
+

(
d3φ

dε3

)
0

(ε− ε0)3

3!
+etc.

(339)
Substituting this value in ∫ ε′′

ε′
e
ψ−ε
Θ

+φ dε,

which expresses the probability that the energy of an unspecified
system of the ensemble lies between the limits ε′ and ε′′, we get

e
ψ−ε0

Θ
+φ0

∫ ε′′

ε′
e

(
d2φ
dε2

)
0

(ε−ε0)2

2
+

(
d3φ
dε3

)
0

(ε−ε0)3

3!
+etc.

dε. (340)

When the number of degrees of freedom is very great, and ε − ε0
in consequence very small, we may neglect the higher powers and
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write∗

e
ψ−ε0

Θ
+φ0

∫ ε′′

ε′
e

(
d2φ
dε2

)
0

(ε−ε0)2

2 dε. (341)

This shows that for a very great number of degrees of free-
dom the probability of deviations of energy from the most prob-
able value (ε0) approaches the form expressed by the ‘law of errors.’
With this approximate law, we get

e
ψ−ε0

Θ
+φ0

(
−2π(
d2φ

dε2

)
0

) 1
2

= 1, (342)

ε = ε0, (ε− ε0)2 = −
(
d2φ

dε2

)
0

, (343)

whence

ψ − ε0
Θ

+ φ0 = 1
2

log

(
d2φ

dε2

)
0

−2π
= −1

2
log
(
2π(ε− ε)2

)
. (344)

∗If a higher degree of accuracy is desired than is afforded by this formula,
it may be multiplied by the series obtained from

e

(
d3φ
dε3

)
0

(ε−ε0)3

3! +etc.

by the ordinary formula for the expansion in series of an exponential function.
There would be no especial analytical difficulty in taking account of a moderate
number of terms of such a series, which would commence

1 +

(
d3φ

dε3

)
0

(ε− ε0)3

3!
+

(
d4φ

dε4

)
0

(ε− ε0)4

4!
+ etc.
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Now it has been proved in Chapter VII that

(ε− ε)2 =
2

n

dε

dεp
ε2p.

We have therefore

η + φ0 =
ψ − ε

Θ
+ φ0 = −1

2
log
(
2π(ε− ε)2

)
= −1

2
log

(
4π

n

dε

dεp
ε2p

)
(345)

approximately. The order of magnitude of η − φ0 is therefore that
of log n. This magnitude is mainly constant. The order of magni-
tude of η + φ0 − 1

2
log n is that of unity. The order of magnitude

of φ0, and therefore of −η, is that of n.∗

Equation (338) gives for the first approximation

φ− φ0 =

(
d2φ

dε2

)
0

(ε− ε0)2

2
= −1

2
, (346)

(φ− φ0)(ε− ε0) =
(ε− ε0)2

Θ
=

dε

dεp
εp, (347)

(φ− φ0)2 =
(ε− ε0)2

Θ2
=
n

2

dε

dεp
. (348)

The members of the last equation have the order of magnitude of n.
Equation (338) gives also for the first approximation

dφ

dε
− 1

Θ
=

(
d2φ

dε2

)
0

(ε− ε0),

whence(
dφ

dε
− 1

Θ

)
(ε− ε0) =

(
d2φ

dε2

)
0

(ε− ε0)2 = −1, (349)

∗Compare (289), (314).
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(
dφ

dε
− 1

Θ

)2

=

(
d2φ

dε2

)2

0

(ε− ε0)2 =
1

(ε− ε0)2
= −

(
d2φ

dε2

)2

0

. (350)

This is of the order of magnitude of n.∗

It should be observed that the approximate distribution of the
ensemble in energy according to the ‘law of errors’ is not dependent
on the particular form of the function of the energy which we have
assumed for the index of probability (η). In any case, we must have∫ ε=∞

V=0

eη+φ dε = 1, (351)

where eη+φ is necessarily positive. This requires that it shall vanish
for ε = ∞, and also for ε = −∞, if this is a possible value. It has
been shown in the last chapter that if ε has a (finite) least possible
value (which is the usual case) and n > 2, eφ will vanish for that
least value of ε. In general therefore η + φ will have a maximum,
which determines the most probable value of the energy. If we
denote this value by ε0, and distinguish the corresponding values of
the functions of the energy by the same suffix, we shall have(

dη

dε

)
0

+

(
dφ

dε

)
0

= 0. (352)

∗We shall find hereafter that the equation(
dφ

dε
− 1

Θ

)
(ε− ε) = −1

is exact for any value of n greater than 2, and that the equation(
dφ

dε
− 1

Θ

)2

= −d
2φ

dε2

is exact for any value of n greater than 4.



statistical mechanics 128

The probability that an unspecified system of the ensemble falls
within any given limits of energy (ε′ and ε′′) is represented by∫ ε′′

ε′
eη+φ dε.

If we expand η and φ in ascending powers of ε − ε0, without going
beyond the squares, the probability that the energy falls within the
given limits takes the form of the ‘law of errors’—

eφ0+η0

∫ ε′′

ε′
e

[(
d2η
dε2

)
0

+

(
d2φ
dε2

)
0

]
(ε−ε0)2

2 dε. (353)

This gives

η0 + φ0 = 1
2

log

[
− 1

2π

(
d2η

dε2

)
0

− 1

2π

(
d2φ

dε2

)
0

]
, (354)

and

(ε− ε0)2 =

[
−
(
d2η

dε2

)
0

−
(
d2φ

dε2

)
0

]−1

. (355)

We shall have a close approximation in general when the quantities
equated in (355) are very small, i.e., when

−
(
d2η

dε2

)
0

−
(
d2φ

dε2

)
0

(356)

is very great. Now when n is very great, −d2φ/dε2 is of the same
order of magnitude, and the condition that (356) shall be very great
does not restrict very much the nature of the function η.

We may obtain other properties pertaining to average values in
a canonical ensemble by the method used for the average of dφ/dε.
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Let u be any function of the energy, either alone or with Θ and
the external coördinates. The average value of u in the ensemble is
determined by the equation

u =

∫ ε=∞

V=0

u e
ψ−ε
Θ

+φ dε. (357)

Now we have identically∫ ε=∞

V=0

u

(
du

dε
− u

Θ
+ u

dφ

dε

)
e
ψ−ε
Θ

+φ dε =

[
u e

ψ−ε
Θ

+φ

]ε=∞
V=0

. (358)

Therefore, by the preceding equation

du

dε
− u

Θ
+ u

dφ

dε
=

[
u e

ψ−ε
Θ

+φ

]ε=∞
V=0

.∗ (359)

If we set u = 1, (a value which need not be excluded,) the second
member of this equation vanishes, as shown on page 118, if n > 2,
and we get

dφ

dε
=

1

Θ
, (360)

as before. It is evident from the same considerations that the second
member of (359) will always vanish if n > 2, unless u becomes
infinite at one of the limits, in which case a more careful examination
of the value of the expression will be necessary. To facilitate the

∗A more general equation, which is not limited to ensembles canonically
distributed, is

du

dε
+ u

dη

dε
+ u

dφ

dε
=
[
u eη+φ

]ε=∞
V=0

,

where η denotes, as usual, the index of probability of phase.
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discussion of such cases, it will be convenient to introduce a certain
limitation in regard to the nature of the system considered. We have
necessarily supposed, in all our treatment of systems canonically
distributed, that the system considered was such as to be capable
of the canonical distribution with the given value of the modulus.
We shall now suppose that the system is such as to be capable of a
canonical distribution with any (finite)∗ modulus. Let us see what
cases we exclude by this last limitation.

The impossibility of a canonical distribution occurs when the
equation

e−
ψ
Θ =

∫ ε=∞

V=0

e−
ε
Θ

+φ dε (361)

fails to determine a finite value for ψ. Evidently the equation can-
not make ψ an infinite positive quantity, the impossibility therefore
occurs when the equation makes ψ = −∞. Now we get easily
from (191)

d
ψ

Θ
= − ε

Θ2
dΘ.

If the canonical distribution is possible for any values of Θ, we can
apply this equation so long as the canonical distribution is possible.
The equation shows that as Θ is increased (without becoming in-
finite) −ψ cannot become infinite unless ε simultaneously becomes
infinite, and that as Θ is decreased (without becoming zero)−ψ can-
not become infinite unless simultaneously ε becomes an infinite neg-
ative quantity. The corresponding cases in thermodynamics would
be bodies which could absorb or give out an infinite amount of heat
without passing certain limits of temperature, when no external
work is done in the positive or negative sense. Such infinite values

∗The term finite applied to the modulus is intended to exclude the value
zero as well as infinity.
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present no analytical difficulties, and do not contradict the general
laws of mechanics or of thermodynamics, but they are quite foreign
to our ordinary experience of nature. In excluding such cases (which
are certainly not entirely devoid of interest) we do not exclude any
which are analogous to any actual cases in thermodynamics.

We assume then that for any finite value of Θ the second member
of (361) has a finite value.

When this condition is fulfilled, the second member of (359) will
vanish for u = e−φV . For, if we set Θ′ = 2Θ,

e−
ε
ΘV = e−

ε
Θ

∫ ε

V=0

eφ dε ≤ e−
ε

Θ′

∫ ε

V=0

e−
ε

Θ′ +φ dε ≤ e−
ε′

Θ′ e−
ψ′

Θ′ ,

where ψ′ denotes the value of ψ for the modulus Θ′. Since the
last member of this formula vanishes for ε = ∞, the less value
represented by the first member must also vanish for the same value
of ε. Therefore the second member of (359), which differs only by a
constant factor, vanishes at the upper limit. The case of the lower
limit remains to be considered. Now

e−
ε
ΘV ≤

∫ ε

V=0

e−
ε
Θ

+φ dε.

The second member of this formula evidently vanishes for the value
of ε, which gives V = 0, whether this be finite or negative infinity.
Therefore, the second member of (359) vanishes at the lower limit
also, and we have

1− e−φV dφ

dε
− e−φV

Θ
+ e−φV

dφ

dε
= 0,

or
e−φV = Θ. (362)
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This equation, which is subject to no restriction in regard to the
value of n, suggests a connection or analogy between the function
of the energy of a system which is represented by e−φV and the
notion of temperature in thermodynamics. We shall return to this
subject in Chapter XIV.

If n > 2, the second member of (359) may easily be shown to
vanish for any of the following values of u viz.: φ, eφ, ε, εm, where
m denotes any positive number. It will also vanish, when n > 4,
for u = dφ/dε, and when n > 2h for u = e−φ dhV/dεh. When the
second member of (359) vanishes, and n > 2, we may write

(u− u)

(
dφ

dε
− 1

Θ

)
= u

dφ

dε
− u

Θ
= −du

dε
. (363)

We thus obtain the following equations:
If n > 2,

(φ− φ)

(
dφ

dε
− 1

Θ

)
= φ

dφ

dε
− φ

Θ
= − 1

Θ
, (364)

(eφ − eφ)

(
dφ

dε
− 1

Θ

)
= eφ

dφ

dε
− eφ

Θ
= −eφ dφ

dε
, (365)

or

2eφ
dφ

dε
= eφ

dφ

dε
=
eφ

Θ
, (366)

(ε− ε)
(
dφ

dε
− 1

Θ

)
= ε

dφ

dε
− ε

Θ
= −1, ∗ (367)

(εm − εm)

(
dφ

dε
− 1

Θ

)
= εm

dφ

dε
− εm

Θ
= −mεm−1. (368)
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If n > 4, (
dφ

dε
− 1

Θ

)2

=

(
dφ

dε

)2

− 1

Θ2
= −d

2φ

dε2
.∗ (369)

If n > 2h

e−φ
dhV

dεh
dφ

dε
− 1

Θ
e−φ

dhV

dεh
= e−φ

dhV

dεh
dφ

dε
− e−φ d

h+1V

dεh+1

or

e−φ
dh+1V

dεh+1
=

1

Θ
e−φ

dhV

dεh
, (370)

whence

e−φ
dh+1V

dεh+1
=

1

Θh
. (371)

Giving h the values 1, 2, 3, etc., we have

dφ

dε
=

1

Θ
, if n > 2,

d2φ

dε2
+

(
dφ

dε

)2

=
1

Θ2
, if n > 4,

as already obtained. Also

d3φ

dε3
+ 3

d2φ

dε2
dφ

dε
+

(
dφ

dε

)3

=
1

Θ3
, if n > 6. (372)

∗This equation may also be obtained from equations (252) and (321). Com-
pare also equation (349) which was derived by an approximative method.

∗Compare equation (360), obtained by an approximative method.
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If Vq is a continuous increasing function of εq, commencing with
Vq = 0, the average value in a canonical ensemble of any function
of εq, either alone or with the modulus and the external coördinates,
is given by equation (275), which is identical with (357) except that
ε, φ, and ψ have the suffix ( )q. The equation may be transformed
so as to give an equation identical with (359) except for the suffixes.
If we add the same suffixes to equation (361), the finite value of its
members will determine the possibility of the canonical distribution.

From these data, it is easy to derive equations similar to (360),
(362)–(372), except that the conditions of their validity must be
differently stated. The equation

e−φqVq = Θ

requires only the condition already mentioned with respect to Vq.
This equation corresponds to (362), which is subject to no restric-
tion with respect to the value of n. We may observe, however, that
V will always satisfy a condition similar to that mentioned with
respect to Vq.

If Vq satisfies the condition mentioned, and eφq a similar condi-
tion, i.e., if eφq is a continuous increasing function of εq, commencing
with the value εφq = 0, equations will hold similar to those given for
the case when n > 2, viz., similar to (360), (364)–(368). Especially
important is

dφq
dεq

=
1

Θ
.

If Vq, e
φq , (or dVq/dεq), d

2Vq/dε
2
q all satisfy similar conditions, we

shall have an equation similar to (369), which was subject to the
condition n > 4. And if d3Vq/dε

3
q also satisfies a similar condition,

we shall have an equation similar to (372), for which the condition
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was n > 6. Finally, if Vq and h successive differential coefficients
satisfy conditions of the kind mentioned, we shall have equations
like (370) and (371) for which the condition was n > 2h.

These conditions take the place of those given above relating
to n. In fact, we might give conditions relating to the differential
coefficients of V , similar to those given relating to the differential
coefficients of Vq, instead of the conditions relating to n, for the va-
lidity of equations (360), (363)–(372). This would somewhat extend
the application of the equations.



X.

ON A DISTRIBUTION IN PHASE CALLED
MICROCANONICAL IN WHICH ALL THE SYSTEMS HAVE

THE SAME ENERGY.

An important case of statistical equilibrium is that in which all
systems of the ensemble have the same energy. We may arrive at the
notion of a distribution which will satisfy the necessary conditions
by the following process. We may suppose that an ensemble is
distributed with a uniform density-in-phase between two limiting
values of the energy, ε′ and ε′′, and with density zero outside of
those limits. Such an ensemble is evidently in statistical equilibrium
according to the criterion in Chapter IV, since the density-in-phase
may be regarded as a function of the energy. By diminishing the
difference of ε′ and ε′′, we may diminish the differences of energy
in the ensemble. The limit of this process gives us a permanent
distribution in which the energy is constant.

We should arrive at the same result, if we should make the den-
sity any function of the energy between the limits ε′ and ε′′, and
zero outside of those limits. Thus, the limiting distribution obtained
from the part of a canonical ensemble between two limits of energy,
when the difference of the limiting energies is indefinitely dimin-
ished, is independent of the modulus, being determined entirely by
the energy, and is identical with the limiting distribution obtained
from a uniform density between limits of energy approaching the
same value.

We shall call the limiting distribution at which we arrive by this
process microcanonical.

We shall find however, in certain cases, that for certain values
of the energy, viz., for those for which eφ is infinite, this process
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fails to define a limiting distribution in any such distinct sense as
for other values of the energy. The difficulty is not in the process,
but in the nature of the case, being entirely analogous to that which
we meet when we try to find a canonical distribution in cases when
ψ becomes infinite. We have not regarded such cases as affording
true examples of the canonical distribution, and we shall not regard
the cases in which eφ is infinite as affording true examples of the
microcanonical distribution. We shall in fact find as we go on that
in such cases our most important formulae become illusory.

The use of formulae relating to a canonical ensemble which
contain eφ dε instead of dp1 . . . dqn, as in the preceding chapters,
amounts to the consideration of the ensemble as divided into an
infinity of microcanonical elements.

From a certain point of view, the microcanonical distribution
may seem more simple than the canonical, and it has perhaps been
more studied, and been regarded as more closely related to the
fundamental notions of thermodynamics. To this last point we shall
return in a subsequent chapter. It is sufficient here to remark that
analytically the canonical distribution is much more manageable
than the microcanonical.

We may sometimes avoid difficulties which the microcanonical
distribution presents by regarding it as the result of the following
process, which involves conceptions less simple but more amenable
to analytical treatment. We may suppose an ensemble distributed
with a density proportional to

e−
(ε−ε′)2

ω2 ,

where ω and ε′ are constants, and then diminish indefinitely the
value of the constant ω. Here the density is nowhere zero until we
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come to the limit, but at the limit it is zero for all energies ex-
cept ε′. We thus avoid the analytical complication of discontinuities
in the value of the density, which require the use of integrals with
inconvenient limits.

In a microcanonical ensemble of systems the energy (ε) is con-
stant, but the kinetic energy (εp) and the potential energy (εq) vary
in the different systems, subject of course to the condition

εp + εq = ε = constant. (373)

Our first inquiries will relate to the division of energy into these two
parts, and to the average values of functions of εp and εq.

We shall use the notation u |ε to denote an average value in a
microcanonical ensemble of energy ε. An average value in a canon-
ical ensemble of modulus Θ, which has hitherto been denoted by u,
we shall in this chapter denote by u |Θ, to distinguish more clearly
the two kinds of averages.

The extension-in-phase within any limits which can be given in
terms of εp and εq may be expressed in the notations of the preceding
chapter by the double integral∫∫

dVp dVq

taken within those limits. If an ensemble of systems is distributed
within those limits with a uniform density-in-phase, the average
value in the ensemble of any function (u) of the kinetic and potential
energies will be expressed by the quotient of integrals∫∫

u dVp dVq∫∫
dVp dVq

.
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Since dVp = eφp dεp, and dεp = dε when εq is constant, the
expression may be written∫∫

u eφp dε dVq∫∫
eφp dε dVq

.

To get the average value of u in an ensemble distributed micro-
canonically with the energy ε, we must make the integrations cover
the extension-in-phase between the energies ε and ε+dε. This gives

u |ε =

dε

∫ εq=ε

Vq=0

u eφp dVq

dε

∫ εq=ε

Vq=0

eφp dVq

.

But by (299) the value of the integral in the denominator is eφ. We
have therefore

u |ε = e−φ
∫ εq=ε

Vq=0

u eφp dVq, (374)

where eφp and Vq are connected by equation (373), and u, if given
as function of εp, or of εp and εq, becomes in virtue of the same
equation a function of εq alone.

We shall assume that eφ has a finite value. If n > 1, it is
evident from equation (305) that eφ is an increasing function of ε,
and therefore cannot be infinite for one value of ε without being
infinite for all greater values of ε, which would make −ψ infinite.∗

When n > 1, therefore, if we assume that eφ is finite, we only
exclude such cases as we found necessary to exclude in the study

∗See equation (322).
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of the canonical distribution. But when n = 1, cases may occur in
which the canonical distribution is perfectly applicable, but in which
the formulae for the microcanonical distribution become illusory,
for particular values of ε, on account of the infinite value of eφ.
Such failing cases of the microcanonical distribution for particular
values of the energy will not prevent us from regarding the canonical
ensemble as consisting of an infinity of microcanonical ensembles.∗

From the last equation, with (298), we get

e−φpVp
∣∣
ε

= e−φ
∫ εp=ε

V=0

Vp dVq = e−φV. (375)

But by equations (288) and (289)

e−φpVp =
2

n
εp. (376)

Therefore

e−φV = e−φpVp
∣∣
ε

=
2

n
εp |ε . (377)

Again, with the aid of equation (301), we get

dφp
dεp

∣∣∣∣
ε

= e−φ
∫ εp=ε

V=0

dφp
dεp

eφp dVq =
dφ

dε
, (378)

∗An example of the failing case of the microcanonical distribution is afforded
by a material point, under the influence of gravity, and constrained to remain
in a vertical circle. The failing case occurs when the energy is just sufficient to
carry the material point to the highest point of the circle.

It will be observed that the difficulty is inherent in the nature of the case,
and is quite independent of the mathematical formulae. The nature of the
difficulty is at once apparent if we try to distribute a finite number of material
points with this particular value of the energy as nearly as possible in statistical
equilibrium, or if we ask: What is the probability that a point taken at random
from an ensemble in statistical equilibrium with this value of the energy will be
found in any specified part of the circle?
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if n > 2. Therefore, by (289)

dφ

dε
=
dφp
dεp

∣∣∣∣
ε

=
(n

2
− 1
)
ε−1
p

∣∣
ε
, if n > 2. (379)

These results are interesting on account of the relations of

the functions e−φV and
dφ

dε
to the notion of temperature in

thermodynamics,—a subject to which we shall return hereafter.
They are particular cases of a general relation easily deduced from
equations (306), (374), (288) and (289). We have

dhV

dεh
=

∫ εp=ε

V=0

dhVp
dεhp

dVq, if h < 1
2
n+ 1.

The equation may be written

e−φ
dhV

dεh
= e−φ

∫ εp=ε

V=0

e−φp
dhVp
dεhp

e−φp dVq.

We have therefore

e−φ
dhV

dεh
= e−φp

dhVp
dεhp

∣∣∣∣
ε

=
Γ(1

2
n)

Γ(1
2
n− h+ 1)

εh−1
p

∣∣
ε
, (380)

if h < 1
2
n+ 1. For example, when n is even, we may make h = 1

2
n,

which gives, with (307),

(2π)
n
2 e−φ(Vq)εq=ε = Γ(1

2
n) ε

1−n
2

p

∣∣∣∣
ε

. (381)

Since any canonical ensemble of systems may be regarded as
composed of microcanonical ensembles, if any quantities u and v
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have the same average values in every microcanonical ensemble,
they will have the same values in every canonical ensemble. To
bring equation (380) formally under this rule, we may observe that
the first member being a function of ε is a constant value in a
microcanonical ensemble, and therefore identical with its average
value. We get thus the general equation

e−φ
dhV

dεh

∣∣∣∣
Θ

= e−φp
dhVp
dεhp

∣∣∣∣
Θ

=
Γ(1

2
n)

Γ(1
2
n− h+ 1)

εh−1
p

∣∣
Θ

= Θ1−h,

(382)
if h < 1

2
n+ 1.∗ The equations

Θ = e−φV
∣∣
Θ

= e−φpVp
∣∣
Θ

=
2

n
εp |Θ , (383)

1

Θ
=
dφ

dε

∣∣∣∣
Θ

=
dφp
dεp

∣∣∣∣
Θ

=
(n

2
− 1
)
ε−1
p

∣∣
Θ
, (384)

may be regarded as particular cases of the general equation. The
last equation is subject to the condition that n > 2.

The last two equations give for a canonical ensemble, if n > 2,(
1− 2

n

)
εp |Θ ε−1

p

∣∣
Θ

= 1. (385)

The corresponding equations for a microcanonical ensemble give, if
n > 2, (

1− 2

n

)
εp |ε ε−1

p

∣∣
ε

=
dφ

d log V
, (386)

which shows that dφ d log V approaches the value unity when n is
very great.

∗See equation (292).
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If a system consists of two parts, having separate energies, we
may obtain equations similar in form to the preceding, which relate
to the system as thus divided.∗ We shall distinguish quantities
relating to the parts by letters with suffixes, the same letters without
suffixes relating to the whole system. The extension-in-phase of
the whole system within any given limits of the energies may be
represented by the double integral∫∫

dV1 dV2

taken within those limits, as appears at once from the definitions
of Chapter VIII. In an ensemble distributed with uniform density
within those limits, and zero density outside, the average value of
any function of ε1 and ε2 is given by the quotient∫∫

u dV1 dV2∫∫
dV1 dV2

∗If this condition is rigorously fulfilled, the parts will have no influence on
each other, and the ensemble formed by distributing the whole microcanonically
is too arbitrary a conception to have a real interest. The principal interest of
the equations which we shall obtain will be in cases in which the condition is
approximately fulfilled. But for the purposes of a theoretical discussion, it is
of course convenient to make such a condition absolute. Compare Chapter IV,
pp. 39 ff., where a similar condition is considered in connection with canonical
ensembles.
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which may also be written∗∫∫
u eφ1 dε dV2∫∫
eφ1 dε dV2

.

If we make the limits of integration ε and ε+ dε, we get the average
value of u in an ensemble in which the whole system is microcanon-
ically distributed in phase, viz.,

u |ε = e−φ
∫ ε2=ε

V2=0

u eφ1 dV2, (387)

where φ1 and V2 are connected by the equation

ε1 + ε2 = constant = ε, (388)

and u, if given as function of ε1, or of ε1 and ε2, becomes in virtue
of the same equation a function of ε2 alone.†

Thus

e−φ1V1

∣∣
ε

= e−φ
∫ ε2=ε

V2=0

V1 dV2, (389)

e−φV = e−φ1V1

∣∣
ε

= e−φ2V2

∣∣
ε
. (390)

∗Where the analytical transformations are identical in form with those on
the preceding pages, it does not appear necessary to give all the steps with the
same detail.

†In the applications of the equation (387), we cannot obtain all the results
corresponding to those which we have obtained from equation (374), because
φp is a known function of εp, while φ1 must be treated as an arbitrary function
of ε1, or nearly so.
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This requires a similar relation for canonical averages

Θ = e−φV
∣∣
Θ

= e−φ1V1

∣∣
Θ

= e−φ2V2

∣∣
Θ
. (391)

Again
dφ1

dε1

∣∣∣∣
ε

= e−φ
∫ ε2=ε

V2=0

dφ1

dε1
eφ1 dV2. (392)

But if n1 > 2, eφ1 vanishes for V1 = 0,∗ and

d

dε
eφ =

d

dε

∫ ε2=ε

V2=0

eφ1 dV2 =

∫ ε2=ε

V2=0

dφ1

dε1
eφ1 dV2. (393)

Hence, if n1 > 2, and n2 > 2,

dφ

dε
=
dφ1

dε1

∣∣∣∣
ε

=
dφ2

dε2

∣∣∣∣
ε

, (394)

and
1

Θ
=
dφ

dε

∣∣∣∣
Θ

=
dφ1

dε1

∣∣∣∣
Θ

=
dφ2

dε2

∣∣∣∣
Θ

. (395)

We have compared certain functions of the energy of the whole
system with average values of similar functions of the kinetic energy
of the whole system, and with average values of similar functions of
the whole energy of a part of the system. We may also compare the
same functions with average values of the kinetic energy of a part
of the system.

We shall express the total, kinetic, and potential energies of
the whole system by ε, εp, and εq, and the kinetic energies of the
parts by ε1p and ε2p. These kinetic energies are necessarily separate:
we need not make any supposition concerning potential energies.

∗See Chapter VIII, equations (306) and (316).
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The extension-in-phase within any limits which can be expressed in
terms of εq, ε1p, ε2p may be represented in the notations of Chap-
ter VIII by the triple integral∫∫∫

dV1p dV2p dVq

taken within those limits. And if an ensemble of systems is dis-
tributed with a uniform density within those limits, the average
value of any function of εq, ε1p, ε2p will be expressed by the quotient∫∫∫

u dV1p dV2p dVq∫∫∫
dV1p dV2p dVq

or ∫∫∫
u eφ1p dε dV2p dVq∫∫∫
eφ1p dε dV2p dVq

.

To get the average value of u for a microcanonical distribution, we
must make the limits ε and ε + dε. The denominator in this case
becomes eφ dε, and we have

u |ε = e−φ
∫ εq=ε

Vq=0

∫ ε2p=ε−εq

ε2p=0

u eφ1p dV2p dVq, (396)

where φ1p, V2p, and Vq are connected by the equation

ε1p + ε2p + εq = constant = ε.

Accordingly

e−φ1pV1p

∣∣
ε

= e−φ
∫ εq=ε

Vq=0

∫ ε2p=ε−εq

ε2p=0

V1p dV2p dVq = e−φV, (397)
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and we may write

e−φV = e−φ1pV1p

∣∣
ε

= e−φ2pV2p

∣∣
ε

=
2

n1

ε1p |ε =
2

n2

ε2p |ε , (398)

and

Θ = e−φV
∣∣
Θ

= e−φ1pV1p

∣∣
Θ

= e−φ2pV2p

∣∣
Θ

=
2

n1

ε1p |Θ =
2

n2

ε2p |Θ .
(399)

Again, if n1 > 2,

dφ1p

dε1p

∣∣∣∣
ε

= e−φ
∫ εq=ε

Vq=0

∫ ε2p=ε−εq

ε2p=0

dφ1p

dε1p
eφ1p dV2p dVq

= e−φ
∫ εq=ε

Vq=0

deφp

dεp
dVq = e−φ

deφ

dε
=
dφ

dε
. (400)

Hence, if n1 > 2, and n2 > 2,

dφ

dε
=
dφ1p

dε1p

∣∣∣∣
ε

=
dφ2p

dε2p

∣∣∣∣
ε

= (1
2
n1 − 1)ε−1

1p

∣∣
ε

= (1
2
n2 − 1)ε−1

2p

∣∣
ε
, (401)

1

Θ
=
dφ

dε

∣∣∣∣
Θ

=
dφ1p

dε1p

∣∣∣∣
Θ

=
dφ2p

dε2p

∣∣∣∣
Θ

= (1
2
n1 − 1)ε−1

1p

∣∣
Θ

= (1
2
n2 − 1)ε−1

2p

∣∣
Θ
.

(402)

We cannot apply the methods employed in the preceding pages
to the microcanonical averages of the (generalized) forces A1, A2,
etc., exerted by a system on external bodies, since these quantities
are not functions of the energies, either kinetic or potential, of the
whole or any part of the system. We may however use the method
described on page 136.
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Let us imagine an ensemble of systems distributed in phase ac-
cording to the index of probability

c− (ε− ε′)2

ω2
,

where ε′ is any constant which is a possible value of the energy,
except only the least value which is consistent with the values of
the external coördinates, and c and ω are other constants. We have
therefore ∫

all· · ·
phases

∫
ec−

(ε−ε′)2

ω2 dp1 . . . dqn = 1, (403)

or

e−c =

∫
all· · ·

phases

∫
e−

(ε−ε′)2

ω2 dp1 . . . dqn, (404)

or again

e−c =

∫ ε=∞

V=0

e−
(ε−ε′)2

ω2 +φ dε. (405)

From (404) we have

de−c

da1

=

∫
all· · ·

phases

∫
2
ε− ε′

ω2
A1 e

−
(ε−ε′)2

ω2 dp1 . . . dqn

=

∫ ε=∞

V=0

2
ε− ε′

ω2
A1 |ε e

−
(ε−ε′)2

ω2 +φ dε, (406)

where A1 |ε denotes the average value of A1 in those systems of the
ensemble which have any same energy ε. (This is the same thing as
the average value of A1 in a microcanonical ensemble of energy ε.)
The validity of the transformation is evident, if we consider sepa-
rately the part of each integral which lies between two infinitesimally
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differing limits of energy. Integrating by parts, we get

de−c

da1

= −
[
A1 |ε e

−
(ε−ε′)2

ω2 +φ

]ε=∞
V=0

+

∫ ε=∞

V=0

(
dA1 |ε
dε

+ A1 |ε
dφ

dε

)
e−

(ε−ε′)2

ω2 +φ dε. (407)

Differentiating (405), we get

de−c

da1

=

∫ ε=∞

V=0

dφ

da1

e−
(ε−ε′)2

ω2 +φ dε−
(
e−

(ε−ε′)2

ω2 +φ dεα
da1

)
V=0

, (408)

where εα denotes the least value of ε consistent with the external
coördinates. The last term in this equation represents the part of
de−c/da1 which is due to the variation of the lower limit of the in-
tegral. It is evident that the expression in the brackets will vanish
at the upper limit. At the lower limit, at which εp = 0, and εq has
the least value consistent with the external coördinates, the average
sign on A1 |ε is superfluous, as there is but one value of A1 which is
represented by −dεα/da1. Exceptions may indeed occur for partic-
ular values of the external coördinates, at which dεα/da1 receive a
finite increment, and the formula becomes illusory. Such particular
values we may for the moment leave out of account. The last term
of (408) is therefore equal to the first term of the second member
of (407). (We may observe that both vanish when n > 2 on account
of the factor eφ.)

We have therefore from these equations∫ ε=∞

V=0

(
dA1 |ε
dε

+ A1 |ε
dφ

dε

)
e−

(ε−ε′)2

ω2 +φ dε=

∫ ε=∞

V=0

dφ

da1

e−
(ε−ε′)2

ω2 +φ dε,

or ∫ ε=∞

V=0

(
dA1 |ε
dε

+ A1 |ε
dφ

dε
− dφ

da1

)
ec−

(ε−ε′)2

ω2 +φ dε = 0. (409)
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That is: the average value in the ensemble of the quantity repre-
sented by the principal parenthesis is zero. This must be true for
any value of ω. If we diminish ω, the average value of the parenthe-
sis at the limit when ω vanishes becomes identical with the value
for ε = ε′. But this may be any value of the energy, except the least
possible. We have therefore

dA1 |ε
dε

+ A1 |ε
dφ

dε
− dφ

da1

= 0, (410)

unless it be for the least value of the energy consistent with
the external coördinates, or for particular values of the external
coördinates. But the value of any term of this equation as de-
termined for particular values of the energy and of the external
coördinates is not distinguishable from its value as determined for
values of the energy and external coördinates indefinitely near those
particular values. The equation therefore holds without limitation.
Multiplying by eφ, we get

eφ
dA1 |ε
dε

+ A1 |ε e
φ dφ

dε
= eφ

dφ

da1

=
deφ

da1

=
d2V

da1 dε
. (411)

The integral of this equation is

A1 |ε e
φ =

dV

da1

+ F1, (412)

where F1 is a function of the external coördinates. We have an
equation of this form for each of the external coördinates. This
gives, with (266), for the complete value of the differential of V

dV = eφ dε+ (eφA1 |ε − F1) da1 + (eφA2 |ε − F2) da2 + etc., (413)
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or

dV = eφ(dε+A1 |ε da1+A2 |ε da2+etc.)−F1 da1−F2 da2−etc. (414)

To determine the values of the functions F1, F2, etc., let us suppose
a1, a2, etc. to vary arbitrarily, while ε varies so as always to have the
least value consistent with the values of the external coördinates.
This will make V = 0, and dV = 0. If n < 2, we shall have also
eφ = 0, which will give

F1 = 0, F2 = 0, etc. (415)

The result is the same for any value of n. For in the variations
considered the kinetic energy will be constantly zero, and the po-
tential energy will have the least value consistent with the external
coördinates. The condition of the least possible potential energy
may limit the ensemble at each instant to a single configuration, or
it may not do so; but in any case the values of A1, A2, etc. will be
the same at each instant for all the systems of the ensemble,∗ and
the equation

dε+ A1 da1 + A2 da2 + etc. = 0

will hold for the variations considered. Hence the functions F1, F2,
etc. vanish in any case, and we have the equation

dV = eφ dε+ eφA1 |ε da1 + eφA2 |ε da2 + etc., (416)

or

d log V =
dε+ A1 |ε da1 + A2 |ε da2 + etc.

e−φV
, (417)

∗This statement, as mentioned before, may have exceptions for particular
values of the external coördinates. This will not invalidate the reasoning, which
has to do with varying values of the external coördinates.
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or again

dε = e−φV d log V − A1 |ε da1 − A2 |ε da2 − etc. (418)

It will be observed that the two last equations have the form of the
fundamental differential equations of thermodynamics, e−φV corre-
sponding to temperature and log V to entropy. We have already
observed properties of e−φV suggestive of an analogy with temper-
ature.∗ The significance of these facts will be discussed in another
chapter.

The two last equations might be written more simply

dV =
dε+ A1 |ε da1 + A2 |ε da2 + etc.

e−φ
,

dε = e−φ dV − A1 |ε da1 − A2 |ε da2 − etc.,

and still have the form analogous to the thermodynamic equations,
but e−φ has nothing like the analogies with temperature which we
have observed in e−φV .

∗See Chapter IX, page 131; also this chapter, page 140.



XI.

MAXIMUM AND MINIMUM PROPERTIES OF VARIOUS
DISTRIBUTIONS IN PHASE.

In the following theorems we suppose, as always, that the systems
forming an ensemble are identical in nature and in the values of the
external coördinates, which are here regarded as constants.

Theorem I. If an ensemble of systems is so distributed in phase
that the index of probability is a function of the energy, the average
value of the index is less than for any other distribution in which
the distribution in energy is unaltered.

Let us write η for the index which is a function of the energy, and
η + ∆η for any other which gives the same distribution in energy.
It is to be proved that∫

all· · ·
phases

∫
(η + ∆η)eη+∆η dp1 . . . dqn >

∫
all· · ·

phases

∫
ηeη dp1 . . . dqn,

(419)
where η is a function of the energy, and ∆η a function of the phase,
which are subject to the conditions that∫

all· · ·
phases

∫
eη+∆η dp1 . . . dqn =

∫
all· · ·

phases

∫
eη dp1 . . . dqn = 1, (420)

and that for any value of the energy (ε′)∫ ε=ε′+dε′

ε=ε′
· · ·
∫
eη+∆η dp1 . . . dqn =

∫ ε=ε′+dε′

ε=ε′
· · ·
∫
eη dp1 . . . dqn. (421)

Equation (420) expresses the general relations which η and η+ ∆η
must satisfy in order to be indices of any distributions, and
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(421) expresses the condition that they give the same distribution
in energy.

Since η is a function of the energy, and may therefore be re-
garded as a constant within the limits of integration of (421), we
may multiply by η under the integral sign in both members, which
gives∫ ε=ε′+dε′

ε=ε′
· · ·
∫
ηeη+∆η dp1 . . . dqn =

∫ ε=ε′+dε′

ε=ε′
· · ·
∫
ηeη dp1 . . . dqn.

Since this is true within the limits indicated, and for every value
of ε′, it will be true if the integrals are taken for all phases. We may
therefore cancel the corresponding parts of (419), which gives∫

all· · ·
phases

∫
∆η eη+∆η dp1 . . . dqn > 0. (422)

But by (420) this is equivalent to∫
all· · ·

phases

∫
(∆η e∆η + 1− e∆η)eη dp1 . . . dqn > 0. (423)

Now ∆η e∆η + 1 − e∆η is a decreasing function of ∆η for negative
values of ∆η, and an increasing function of ∆η for positive values
of ∆η. It vanishes for ∆η = 0. The expression is therefore incapable
of a negative value, and can have the value 0 only for ∆η = 0. The
inequality (423) will hold therefore unless ∆η = 0 for all phases.
The theorem is therefore proved.

Theorem II. If an ensemble of systems is canonically distributed
in phase, the average index of probability is less than in any other
distribution of the ensemble having the same average energy.

For the canonical distribution let the index be (ψ − ε)/Θ, and
for another having the same average energy let the index be
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(ψ − ε)/Θ + ∆η, where ∆η is an arbitrary function of the phase
subject only to the limitation involved in the notion of the index,
that∫

all· · ·
phases

∫
e
ψ−ε
Θ

+∆η dp1 . . . dqn =

∫
all· · ·

phases

∫
e
ψ−ε
Θ dp1 . . . dqn = 1,

(424)
and to that relating to the constant average energy, that∫

all· · ·
phases

∫
ε e

ψ−ε
Θ

+∆η dp1 . . . dqn =

∫
all· · ·

phases

∫
ε e

ψ−ε
Θ dp1 . . . dqn.

(425)
It is to be proved that∫

all· · ·
phases

∫ (
ψ

Θ
− ε

Θ
+ ∆η

)
e
ψ−ε
Θ

+∆η dp1 . . . dqn

>

∫
all· · ·

phases

∫ (
ψ

Θ
− ε

Θ

)
e
ψ−ε
Θ dp1 . . . dqn. (426)

Now in virtue of the first condition (424) we may cancel the constant
term ψ/Θ in the parentheses in (426), and in virtue of the second
condition (425) we may cancel the term ε/Θ. The proposition to be
proved is thus reduced to∫

all· · ·
phases

∫
∆η e

ψ−ε
Θ

+∆η dp1 . . . dqn > 0,

which may be written, in virtue of the condition (424),∫
all· · ·

phases

∫
(∆η e∆η + 1− e∆η)e

ψ−ε
Θ dp1 . . . dqn > 0. (427)

In this form its truth is evident for the same reasons which applied
to (423).



statistical mechanics 156

Theorem III. If Θ is any positive constant, the average value
in an ensemble of the expression η + ε/Θ (η denoting as usual the
index of probability and ε the energy) is less when the ensemble is
distributed canonically with modulus Θ, than for any other distri-
bution whatever.

In accordance with our usual notation let us write (ψ− ε)/Θ for
the index of the canonical distribution. In any other distribution
let the index be (ψ − ε)/Θ + ∆η.

In the canonical ensemble η + ε/Θ has the constant value ψ/Θ;
in the other ensemble it has the value ψ/Θ + ∆η. The proposition
to be proved may therefore be written

ψ

Θ
<

∫
all· · ·

phases

∫ (
ψ

Θ
+ ∆η

)
e
ψ−ε
Θ

+∆η dp1 . . . dqn, (428)

where∫
all· · ·

phases

∫
e
ψ−ε
Θ

+∆η dp1 . . . dqn =

∫
all· · ·

phases

∫
e
ψ−ε
Θ dp1 . . . dqn = 1.

(429)
In virtue of this condition, since ψ/Θ is constant, the proposition
to be proved reduces to

0 <

∫
all· · ·

phases

∫
∆η e

ψ−ε
Θ

+∆η dp1 . . . dqn, (430)

where the demonstration may be concluded as in the last theorem.
If we should substitute for the energy in the preceding theorems

any other function of the phase, the theorems, mutatis mutandis,
would still hold. On account of the unique importance of the energy
as a function of the phase, the theorems as given are especially
worthy of notice. When the case is such that other functions of the
phase have important properties relating to statistical equilibrium,
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as described in Chapter IV,∗ the three following theorems, which are
generalizations of the preceding, may be useful. It will be sufficient
to give them without demonstration, as the principles involved are
in no respect different.

Theorem IV. If an ensemble of systems is so distributed in phase
that the index of probability is any function of F1, F2, etc., (these
letters denoting functions of the phase,) the average value of the
index is less than for any other distribution in phase in which the
distribution with respect to the functions F1, F2, etc. is unchanged.

Theorem V. If an ensemble of systems is so distributed in phase
that the index of probability is a linear function of F1, F2, etc.,
(these letters denoting functions of the phase,) the average value
of the index is less than for any other distribution in which the
functions F1, F2, etc. have the same average values.

Theorem VI. The average value in an ensemble of systems of
η+F (where η denotes as usual the index of probability and F any
function of the phase) is less when the ensemble is so distributed
that η + F is constant than for any other distribution whatever.

Theorem VII. If a system which in its different phases consti-
tutes an ensemble consists of two parts, and we consider the average
index of probability for the whole system, and also the average in-
dices for each of the parts taken separately, the sum of the average
indices for the parts will be either less than the average index for the
whole system, or equal to it, but cannot be greater. The limiting
case of equality occurs when the distribution in phase of each part
is independent of that of the other, and only in this case.

Let the coördinates and momenta of the whole system be
q1, . . . qn, p1, . . . pn, of which q1, . . . qm, p1, . . . pm relate to one

∗See pages 41–46.
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part of the system, and qm+1, . . . qn, pm+1, . . . pn to the other. If
the index of probability for the whole system is denoted by η, the
probability that the phase of an unspecified system lies within any
given limits is expressed by the integral∫

· · ·
∫
eη dp1 . . . dqn (431)

taken for those limits. If we set∫
· · ·
∫
eη dpm+1 . . . dpn dqm+1 . . . dqn = eη1 , (432)

where the integrations cover all phases of the second system, and∫
· · ·
∫
eη dp1 . . . dpm dq1 . . . dqm = eη2 , (433)

where the integrations cover all phases of the first system, the inte-
gral (431) will reduce to the form∫

· · ·
∫
eη1 dp1 . . . dpm dq1 . . . dqm, (434)

when the limits can be expressed in terms of the coördinates and
momenta of the first part of the system. The same integral will
reduce to ∫

· · ·
∫
eη2 dpm+1 . . . dpn dqm+1 . . . dqn, (435)

when the limits can be expressed in terms of the coördinates and
momenta of the second part of the system. It is evident that η1 and
η2 are the indices of probability for the two parts of the system
taken separately.
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The main proposition to be proved may be written∫
· · ·
∫
η1e

η1 dp1 . . . dqm +

∫
· · ·
∫
η2e

η2 dpm+1 . . . dqn

≤
∫
· · ·
∫
ηeη dp1 . . . dqn, (436)

where the first integral is to be taken over all phases of the first
part of the system, the second integral over all phases of the second
part of the system, and the last integral over all phases of the whole
system. Now we have∫

· · ·
∫
eη dp1 . . . dqn = 1, (437)∫

· · ·
∫
eη1 dp1 . . . dqm = 1, (438)

and ∫
· · ·
∫
eη2 dpm+1 . . . dqn = 1, (439)

where the limits cover in each case all the phases to which the
variables relate. The two last equations, which are in themselves
evident, may be derived by partial integration from the first.

It appears from the definitions of η1 and η2 that (436) may also
be written∫
· · ·
∫
η1e

η dp1 . . . dqn +

∫
· · ·
∫
η2e

η dp1 . . . dqn

≤
∫
· · ·
∫
ηeη dp1 . . . dqn, (440)
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or ∫
· · ·
∫

(η − η1 − η2)eη dp1 . . . dqn ≥ 0,

where the integrations cover all phases. Adding the equation∫
· · ·
∫
eη1+η2 dp1 . . . dqn = 1, (441)

which we get by multiplying (438) and (439), and subtracting (437),
we have for the proposition to be proved∫

all· · ·
phases

∫ [
(η − η1 − η2)eη + eη1+η2 − eη

]
dp1 . . . dqn ≥ 0. (442)

Let
u = η − η1 − η2. (443)

The main proposition to be proved may be written∫
all· · ·

phases

∫
(u eu + 1− eu)eη1+η2 dp1 . . . dqn ≥ 0. (444)

This is evidently true since the quantity in the parenthesis is inca-
pable of a negative value.∗ Moreover the sign = can hold only when
the quantity in the parenthesis vanishes for all phases, i.e., when
u = 0 for all phases. This makes η = η1 + η2 for all phases, which
is the analytical condition which expresses that the distributions in
phase of the two parts of the system are independent.

Theorem VIII. If two or more ensembles of systems which are
identical in nature, but may be distributed differently in phase, are
united to form a single ensemble, so that the probability-coefficient

∗See Theorem I, where this is proved of a similar expression.



statistical mechanics 161

of the resulting ensemble is a linear function of the probability-
coefficients of the original ensembles, the average index of proba-
bility of the resulting ensemble cannot be greater than the same
linear function of the average indices of the original ensembles. It
can be equal to it only when the original ensembles are similarly
distributed in phase.

Let P1, P2, etc. be the probability-coefficients of the original en-
sembles, and P that of the ensemble formed by combining them;
and let N1, N2, etc. be the numbers of systems in the original en-
sembles. It is evident that we shall have

P = c1P1 + c2P2 + etc. =
∑

(c1P1), (445)

where

c1 =
N1∑
N1

, c2 =
N2∑
N1

, etc. (446)

The main proposition to be proved is that∫
all· · ·

phases

∫
P logP dp1 . . . dqn ≤

∑[
c1

∫
all· · ·

phases

∫
P1 logP1 dp1 . . . dqn

]
(447)

or ∫
all· · ·

phases

∫ [∑
(c1P1 logP1)− P logP

]
dp1 . . . dqn ≥ 0. (448)

If we set

Q1 = P1 logP1 − P1 logP − P1 + P

Q1 will be positive, except when it vanishes for P1 = P . To prove
this, we may regard P1 and P as any positive quantities. Then(

dQ1

dP1

)
P

= logP1 − logP,
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(
d2Q1

dP 2
1

)
P

=
1

P1

.

Since Q1 and dQ1/dP1 vanish for P1 = P , and the second
differential coefficient is always positive, Q1 must be positive except
when P1 = P . Therefore, if Q2, etc. have similar definitions,∑

(c1Q1) ≥ 0. (449)

But since ∑
(c1P1) = P

and ∑
c1 = 1,∑

(c1Q1) =
∑

(c1P1 logP1)− P logP. (450)

This proves (448), and shows that the sign = will hold only when

P1 = P, P2 = P, etc.

for all phases, i.e., only when the distribution in phase of the original
ensembles are all identical.

Theorem IX. A uniform distribution of a given number of sys-
tems within given limits of phase gives a less average index of prob-
ability of phase than any other distribution.

Let η be the constant index of the uniform distribution, and
η + ∆η the index of some other distribution. Since the number of
systems within the given limits is the same in the two distributions
we have∫

· · ·
∫
eη+∆η dp1 . . . dqn =

∫
· · ·
∫
eη dp1 . . . dqn, (451)
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where the integrations, like those which follow, are to be taken
within the given limits. The proposition to be proved may be writ-
ten∫
· · ·
∫

(η + ∆η)eη+∆η dp1 . . . dqn >

∫
· · ·
∫
ηeη dp1 . . . dqn, (452)

or, since η is constant,∫
· · ·
∫

(η + ∆η)e∆η dp1 . . . dqn >

∫
· · ·
∫
η dp1 . . . dqn. (453)

In (451) also we may cancel the constant factor eη, and multiply by
the constant factor (η + 1). This gives∫

· · ·
∫

(η + 1)e∆η dp1 . . . dqn =

∫
· · ·
∫

(η + 1) dp1 . . . dqn.

The subtraction of this equation will not alter the inequality to be
proved, which may therefore be written∫

· · ·
∫

(∆η − 1)e∆η dp1 . . . dqn >

∫
· · ·
∫
−dp1 . . . dqn

or ∫
· · ·
∫

(∆ηe∆η − e∆η + 1) dp1 . . . dqn > 0. (454)

Since the parenthesis in this expression represents a positive value,
except when it vanishes for ∆η = 0, the integral will be positive un-
less ∆η vanishes everywhere within the limits, which would make
the difference of the two distributions vanish. The theorem is there-
fore proved.



XII.

ON THE MOTION OF SYSTEMS AND ENSEMBLES OF
SYSTEMS THROUGH LONG PERIODS OF TIME.

An important question which suggests itself in regard to any case
of dynamical motion is whether the system considered will return
in the course of time to its initial phase, or, if it will not return
exactly to that phase, whether it will do so to any required degree
of approximation in the course of a sufficiently long time. To be
able to give even a partial answer to such questions, we must know
something in regard to the dynamical nature of the system. In the
following theorem, the only assumption in this respect is such as we
have found necessary for the existence of the canonical distribution.

If we imagine an ensemble of identical systems to be distributed
with a uniform density throughout any finite extension-in-phase,
the number of the systems which leave the extension-in-phase and
will not return to it in the course of time is less than any assignable
fraction of the whole number; provided, that the total extension-in-
phase for the systems considered between two limiting values of the
energy is finite, these limiting values being less and greater respec-
tively than any of the energies of the first-mentioned extension-in-
phase.

To prove this, we observe that at the moment which we call ini-
tial the systems occupy the given extension-in-phase. It is evident
that some systems must leave the extension immediately, unless all
remain in it forever. Those systems which leave the extension at
the first instant, we shall call the front of the ensemble. It will
be convenient to speak of this front as generating the extension-in-
phase through which it passes in the course of time, as in geometry
a surface is said to generate the volume through which it passes. In
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equal times the front generates equal extensions in phase. This is an
immediate consequence of the principle of conservation of extension-
in-phase, unless indeed we prefer to consider it as a slight variation
in the expression of that principle. For in two equal short intervals
of time let the extensions generated be A and B. (We make the
intervals short simply to avoid the complications in the enunciation
or interpretation of the principle which would arise when the same
extension-in-phase is generated more than once in the interval con-
sidered.) Now if we imagine that at a given instant systems are
distributed throughout the extension A, it is evident that the same
systems will after a certain time occupy the extension B, which
is therefore equal to A in virtue of the principle cited. The front
of the ensemble, therefore, goes on generating equal extensions in
equal times. But these extensions are included in a finite extension,
viz., that bounded by certain limiting values of the energy. Sooner
or later, therefore, the front must generate phases which it has be-
fore generated. Such second generation of the same phases must
commence with the initial phases. Therefore a portion at least of
the front must return to the original extension-in-phase. The same
is of course true of the portion of the ensemble which follows that
portion of the front through the same phases at a later time.

It remains to consider how large the portion of the ensemble is,
which will return to the original extension-in-phase. There can be
no portion of the given extension-in-phase, the systems of which
leave the extension and do not return. For we can prove for any
portion of the extension as for the whole, that at least a portion of
the systems leaving it will return.

We may divide the given extension-in-phase into parts as follows.
There may be parts such that the systems within them will never
pass out of them. These parts may indeed constitute the whole of
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the given extension. But if the given extension is very small, these
parts will in general be non-*existent. There may be parts such
that systems within them will all pass out of the given extension
and all return within it. The whole of the given extension-in-phase
is made up of parts of these two kinds. This does not exclude the
possibility of phases on the boundaries of such parts, such that
systems starting with those phases would leave the extension and
never return. But in the supposed distribution of an ensemble of
systems with a uniform density-in-phase, such systems would not
constitute any assignable fraction of the whole number.

These distinctions may be illustrated by a very simple example.
If we consider the motion of a rigid body of which one point is
fixed, and which is subject to no forces, we find three cases. (1) The
motion is periodic. (2) The system will never return to its original
phase, but will return infinitely near to it. (3) The system will never
return either exactly or approximately to its original phase. But if
we consider any extension-in-phase, however small, a system leaving
that extension will return to it except in the case called by Poinsot
‘singular,’ viz., when the motion is a rotation about an axis lying in
one of two planes having a fixed position relative to the rigid body.
But all such phases do not constitute any true extension-in-phase
in the sense in which we have defined and used the term.∗

∗An ensemble of systems distributed in phase is a less simple and elementary
conception than a single system. But by the consideration of suitable ensembles
instead of single systems, we may get rid of the inconvenience of having to con-
sider exceptions formed by particular cases of the integral equations of motion,
these cases simply disappearing when the ensemble is substituted for the single
system as a subject of study. This is especially true when the ensemble is dis-
tributed, as in the case called canonical, throughout an extension-in-phase. In
a less degree it is true of the microcanonical ensemble, which does not occupy
any extension-in-phase, (in the sense in which we have used the term,) although
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In the same way it may be proved that the systems in a canonical
ensemble which at a given instant are contained within any finite
extension-in-phase will in general return to that extension-in-phase,
if they leave it, the exceptions, i.e., the number which pass out of
the extension-in-phase and do not return to it, being less than any
assignable fraction of the whole number. In other words, the prob-
ability that a system taken at random from the part of a canonical
ensemble which is contained within any given extension-in-phase,
will pass out of that extension and not return to it, is zero.

A similar theorem may be enunciated with respect to a micro-
canonical ensemble. Let us consider the fractional part of such an
ensemble which lies within any given limits of phase. This fraction
we shall denote by F . It is evidently constant in time since the en-
semble is in statistical equilibrium. The systems within the limits
will not in general remain the same, but some will pass out in each
unit of time while an equal number come in. Some may pass out
never to return within the limits. But the number which in any time
however long pass out of the limits never to return will not bear any
finite ratio to the number within the limits at a given instant. For,
if it were otherwise, let f denote the fraction representing such ratio
for the time T . Then, in the time T , the number which pass out
never to return will bear the ratio fF to the whole number in the
ensemble, and in a time exceeding T/(fF ) the number which pass
out of the limits never to return would exceed the total number of
systems in the ensemble. The proposition is therefore proved.

This proof will apply to the cases before considered, and may be
regarded as more simple than that which was given. It may also be

it is convenient to regard it as a limiting case with respect to ensembles which
do, as we thus gain for the subject some part of the analytical simplicity which
belongs to the theory of ensembles which occupy true extensions-in-phase.
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applied to any true case of statistical equilibrium. By a true case of
statistical equilibrium is meant such as may be described by giving
the general value of the probability that an unspecified system of
the ensemble is contained within any given limits of phase.∗

∗An ensemble in which the systems are material points constrained to move
in vertical circles, with just enough energy to carry them to the highest points,
cannot afford a true example of statistical equilibrium. For any other value of
the energy than the critical value mentioned, we might in various ways describe
an ensemble in statistical equilibrium, while the same language applied to the
critical value of the energy would fail to do so. Thus, if we should say that the
ensemble is so distributed that the probability that a system is in any given
part of the circle is proportioned to the time which a single system spends in
that part, motion in either direction being equally probable, we should perfectly
define a distribution in statistical equilibrium for any value of the energy except
the critical value mentioned above, but for this value of the energy all the
probabilities in question would vanish unless the highest point is included in
the part of the circle considered, in which case the probability is unity, or forms
one of its limits, in which case the probability is indeterminate. Compare the
foot-note on page 139.

A still more simple example is afforded by the uniform motion of a material
point in a straight line. Here the impossibility of statistical equilibrium is not
limited to any particular energy, and the canonical distribution as well as the
microcanonical is impossible.

These examples are mentioned here in order to show the necessity of caution
in the application of the above principle, with respect to the question whether
we have to do with a true case of statistical equilibrium.

Another point in respect to which caution must be exercised is that the part
of an ensemble of which the theorem of the return of systems is asserted should
be entirely defined by limits within which it is contained, and not by any such
condition as that a certain function of phase shall have a given value. This is
necessary in order that the part of the ensemble which is considered should be
any assignable fraction of the whole. Thus, if we have a canonical ensemble
consisting of material points in vertical circles, the theorem of the return of
systems may be applied to a part of the ensemble defined as contained in a
given part of the circle. But it may not be applied in all cases to a part of the
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Let us next consider whether an ensemble of isolated systems
has any tendency in the course of time toward a state of statistical
equilibrium.

There are certain functions of phase which are constant in time.
The distribution of the ensemble with respect to the values of these
functions is necessarily invariable, that is, the number of systems
within any limits which can be specified in terms of these functions
cannot vary in the course of time. The distribution in phase which
without violating this condition gives the least value of the average
index of probability of phase (η) is unique, and is that in which the
index of probability (η) is a function of the functions mentioned.∗

It is therefore a permanent distribution,† and the only permanent
distribution consistent with the invariability of the distribution with
respect to the functions of phase which are constant in time.

It would seem, therefore, that we might find a sort of measure
of the deviation of an ensemble from statistical equilibrium in the
excess of the average index above the minimum which is consistent
with the condition of the invariability of the distribution with re-
spect to the constant functions of phase. But we have seen that the
index of probability is constant in time for each system of the en-
semble. The average index is therefore constant, and we find by this
method no approach toward statistical equilibrium in the course of
time.

Yet we must here exercise great caution. One function may
approach indefinitely near to another function, while some quan-

ensemble defined as contained in a given part of the circle and having a given
energy. It would, in fact, express the exact opposite of the truth when the given
energy is the critical value mentioned above.

∗See Chapter XI, Theorem IV.
†See Chapter IV, sub init.
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tity determined by the first does not approach the corresponding
quantity determined by the second. A line joining two points may
approach indefinitely near to the straight line joining them, while
its length remains constant. We may find a closer analogy with the
case under consideration in the effect of stirring an incompressible
liquid.∗ In space of 2n dimensions the case might be made analyt-
ically identical with that of an ensemble of systems of n degrees of
freedom, but the analogy is perfect in ordinary space. Let us sup-
pose the liquid to contain a certain amount of coloring matter which
does not affect its hydrodynamic properties. Now the state in which
the density of the coloring matter is uniform, i.e., the state of per-
fect mixture, which is a sort of state of equilibrium in this respect
that the distribution of the coloring matter in space is not affected
by the internal motions of the liquid, is characterized by a minimum
value of the average square of the density of the coloring matter.
Let us suppose, however, that the coloring matter is distributed
with a variable density. If we give the liquid any motion whatever,
subject only to the hydrodynamic law of incompressibility,—it may
be a steady flux, or it may vary with the time,—the density of the
coloring matter at any same point of the liquid will be unchanged,
and the average square of this density will therefore be unchanged.
Yet no fact is more familiar to us than that stirring tends to bring
a liquid to a state of uniform mixture, or uniform densities of its
components, which is characterized by minimum values of the av-
erage squares of these densities. It is quite true that in the physical
experiment the result is hastened by the process of diffusion, but
the result is evidently not dependent on that process.

∗By liquid is here meant the continuous body of theoretical hydrodynamics,
and not anything of the molecular structure and molecular motions of real
liquids.
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The contradiction is to be traced to the notion of the density
of the coloring matter, and the process by which this quantity is
evaluated. This quantity is the limiting ratio of the quantity of
the coloring matter in an element of space to the volume of that
element. Now if we should take for our elements of volume, after
any amount of stirring, the spaces occupied by the same portions of
the liquid which originally occupied any given system of elements of
volume, the densities of the coloring matter, thus estimated, would
be identical with the original densities as determined by the given
system of elements of volume. Moreover, if at the end of any finite
amount of stirring we should take our elements of volume in any or-
dinary form but sufficiently small, the average square of the density
of the coloring matter, as determined by such element of volume,
would approximate to any required degree to its value before the
stirring. But if we take any element of space of fixed position and
dimensions, we may continue the stirring so long that the densities
of the colored liquid estimated for these fixed elements will approach
a uniform limit, viz., that of perfect mixture.

The case is evidently one of those in which the limit of a limit
has different values, according to the order in which we apply the
processes of taking a limit. If treating the elements of volume as
constant, we continue the stirring indefinitely, we get a uniform
density, a result not affected by making the elements as small as
we choose; but if treating the amount of stirring as finite, we di-
minish indefinitely the elements of volume, we get exactly the same
distribution in density as before the stirring, a result which is not af-
fected by continuing the stirring as long as we choose. The question
is largely one of language and definition. One may perhaps be al-
lowed to say that a finite amount of stirring will not affect the mean
square of the density of the coloring matter, but an infinite amount
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of stirring may be regarded as producing a condition in which the
mean square of the density has its minimum value, and the density
is uniform. We may certainly say that a sensibly uniform density of
the colored component may be produced by stirring. Whether the
time required for this result would be long or short depends upon
the nature of the motion given to the liquid, and the fineness of our
method of evaluating the density.

All this may appear more distinctly if we consider a special case
of liquid motion. Let us imagine a cylindrical mass of liquid of
which one sector of 90◦ is black and the rest white. Let it have
a motion of rotation about the axis of the cylinder in which the
angular velocity is a function of the distance from the axis. In the
course of time the black and the white parts would become drawn
out into thin ribbons, which would be wound spirally about the axis.
The thickness of these ribbons would diminish without limit, and
the liquid would therefore tend toward a state of perfect mixture
of the black and white portions. That is, in any given element
of space, the proportion of the black and white would approach
1 : 3 as a limit. Yet after any finite time, the total volume would be
divided into two parts, one of which would consist of the white liquid
exclusively, and the other of the black exclusively. If the coloring
matter, instead of being distributed initially with a uniform density
throughout a section of the cylinder, were distributed with a density
represented by any arbitrary function of the cylindrical coördinates
r, θ and z, the effect of the same motion continued indefinitely would
be an approach to a condition in which the density is a function of
r and z alone. In this limiting condition, the average square of
the density would be less than in the original condition, when the
density was supposed to vary with θ, although after any finite time
the average square of the density would be the same as at first.
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If we limit our attention to the motion in a single plane per-
pendicular to the axis of the cylinder, we have something which is
almost identical with a diagrammatic representation of the changes
in distribution in phase of an ensemble of systems of one degree of
freedom, in which the motion is periodic, the period varying with
the energy, as in the case of a pendulum swinging in a circular
arc. If the coördinates and momenta of the systems are represented
by rectangular coördinates in the diagram, the points in the di-
agram representing the changing phases of moving systems, will
move about the origin in closed curves of constant energy. The mo-
tion will be such that areas bounded by points representing moving
systems will be preserved. The only difference between the motion
of the liquid and the motion in the diagram is that in one case the
paths are circular, and in the other they differ more or less from
that form.

When the energy is proportional to p2+q2 the curves of constant
energy are circles, and the period is independent of the energy.
There is then no tendency toward a state of statistical equilibrium.
The diagram turns about the origin without change of form. This
corresponds to the case of liquid motion, when the liquid revolves
with a uniform angular velocity like a rigid solid.

The analogy between the motion of an ensemble of systems in
an extension-in-phase and a steady current in an incompressible liq-
uid, and the diagrammatic representation of the case of one degree
of freedom, which appeals to our geometrical intuitions, may be
sufficient to show how the conservation of density-in-phase, which
involves the conservation of the average value of the index of proba-
bility of phase, is consistent with an approach to a limiting condition
in which that average value is less. We might perhaps fairly infer
from such considerations as have been adduced that an approach
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to a limiting condition of statistical equilibrium is the general rule,
when the initial condition is not of that character. But the sub-
ject is of such importance that it seems desirable to give it farther
consideration.

Let us suppose that the total extension-in-phase for the kind of
system considered to be divided into equal elements (DV ) which
are very small but not infinitely small. Let us imagine an ensemble
of systems distributed in this extension in a manner represented
by the index of probability η, which is an arbitrary function of the
phase subject only to the restriction expressed by equation (46) of
Chapter I. We shall suppose the elements DV to be so small that
η may in general be regarded as sensibly constant within any one
of them at the initial moment. Let the path of a system be defined
as the series of phases through which it passes.

At the initial moment (t′) a certain system is in an element of
extension DV ′. Subsequently, at the time t′′, the same system is
in the element DV ′′. Other systems which were at first in DV ′

will at the time t′′ be in DV ′′, but not all, probably. The systems
which were at first in DV ′ will at the time t′′ occupy an extension-in-
phase exactly as large as at first. But it will probably be distributed
among a very great number of the elements (DV ) into which we have
divided the total extension-in-phase. If it is not so, we can generally
take a later time at which it will be so. There will be exceptions to
this for particular laws of motion, but we will confine ourselves to
what may fairly be called the general case. Only a very small part
of the systems initially in DV ′ will be found in DV ′′ at the time t′′,
and those which are found in DV ′′ at that time were at the initial
moment distributed among a very large number of elements DV .

What is important for our purpose is the value of η, the index
of probability of phase in the element DV ′′ at the time t′′. In the
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part of DV ′′ occupied by systems which at the time t′ were in DV ′

the value of η will be the same as its value in DV ′ at the time t′,
which we shall call η′. In the parts of DV ′′ occupied by systems
which at t′ were in elements very near to DV ′ we may suppose the
value of η to vary little from η′. We cannot assume this in regard
to parts of DV ′′ occupied by systems which at t′ were in elements
remote from DV ′. We want, therefore, some idea of the nature of
the extension-in-phase occupied at t′ by the systems which at t′′ will
occupy DV ′′. Analytically, the problem is identical with finding the
extension occupied at t′′ by the systems which at t′ occupied DV ′.
Now the systems in DV ′′ which lie on the same path as the system
first considered, evidently arrived at DV ′′ at nearly the same time,
and must have left DV ′ at nearly the same time, and therefore at t′

were in or near DV ′. We may therefore take η′ as the value for these
systems. The same essentially is true of systems in DV ′′ which lie on
paths very close to the path already considered. But with respect
to paths passing through DV ′ and DV ′′, but not so close to the
first path, we cannot assume that the time required to pass from
DV ′ to DV ′′ is nearly the same as for the first path. The difference
of the times required may be small in comparison with t′′ − t′, but
as this interval can be as large as we choose, the difference of the
times required in the different paths has no limit to its possible
value. Now if the case were one of statistical equilibrium, the value
of η would be constant in any path, and if all the paths which
pass through DV ′′ also pass through or near DV ′, the value of η
throughout DV ′′ will vary little from η′. But when the case is not
one of statistical equilibrium, we cannot draw any such conclusion.
The only conclusion which we can draw with respect to the phase
at t′ of the systems which at t′′ are in DV ′′ is that they are nearly
on the same path.
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Now if we should make a new estimate of indices of probability of
phase at the time t′′, using for this purpose the elements DV ,—that
is, if we should divide the number of systems in DV ′′, for example,
by the total number of systems, and also by the extension-in-phase
of the element, and take the logarithm of the quotient, we would
get a number which would be less than the average value of η for
the systems within DV ′′ based on the distribution in phase at the
time t′.∗ Hence the average value of η for the whole ensemble of
systems based on the distribution at t′′ will be less than the average
value based on the distribution at t′.

We must not forget that there are exceptions to this general rule.
These exceptions are in cases in which the laws of motion are such
that systems having small differences of phase will continue always
to have small differences of phase.

It is to be observed that if the average index of probability in
an ensemble may be said in some sense to have a less value at one
time than at another, it is not necessarily priority in time which
determines the greater average index. If a distribution, which is not
one of statistical equilibrium, should be given for a time t′, and the
distribution at an earlier time t′′ should be defined as that given
by the corresponding phases, if we increase the interval leaving t′

fixed and taking t′′ at an earlier and earlier date, the distribution
at t′′ will in general approach a limiting distribution which is in
statistical equilibrium. The determining difference in such cases is
that between a definite distribution at a definite time and the limit
of a varying distribution when the moment considered is carried
either forward or backward indefinitely.†

∗See Chapter XI, Theorem IX.
†One may compare the kinematical truism that when two points are moving

with uniform velocities, (with the single exception of the case where the relative
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But while the distinction of prior and subsequent events may be
immaterial with respect to mathematical fictions, it is quite other-
wise with respect to the events of the real world. It should not be
forgotten, when our ensembles are chosen to illustrate the proba-
bilities of events in the real world, that while the probabilities of
subsequent events may often be determined from the probabilities
of prior events, it is rarely the case that probabilities of prior events
can be determined from those of subsequent events, for we are rarely
justified in excluding the consideration of the antecedent probability
of the prior events.

It is worthy of notice that to take a system at random from
an ensemble at a date chosen at random from several given dates,
t′, t′′, etc., is practically the same thing as to take a system at
random from the ensemble composed of all the systems of the given
ensemble in their phases at the time t′, together with the same
systems in their phases at the time t′′, etc. By Theorem VIII of
Chapter XI this will give an ensemble in which the average index
of probability will be less than in the given ensemble, except in the
case when the distribution in the given ensemble is the same at
the times t′, t′′, etc. Consequently, any indefiniteness in the time
in which we take a system at random from an ensemble has the
practical effect of diminishing the average index of the ensemble
from which the system may be supposed to be drawn, except when
the given ensemble is in statistical equilibrium.

motion is zero,) their mutual distance at any definite time is less than for t =∞,
or t = −∞.



XIII.

EFFECT OF VARIOUS PROCESSES ON AN ENSEMBLE OF
SYSTEMS.

In the last chapter and in Chapter I we have considered the changes
which take place in the course of time in an ensemble of isolated
systems. Let us now proceed to consider the changes which will take
place in an ensemble of systems under external influences. These ex-
ternal influences will be of two kinds, the variation of the coördinates
which we have called external, and the action of other ensembles of
systems. The essential difference of the two kinds of influence con-
sists in this, that the bodies to which the external coördinates relate
are not distributed in phase, while in the case of interaction of the
systems of two ensembles, we have to regard the fact that both are
distributed in phase. To find the effect produced on the ensem-
ble with which we are principally concerned, we have therefore to
consider single values of what we have called external coördinates,
but an infinity of values of the internal coördinates of any other
ensemble with which there is interaction.

Or,—to regard the subject from another point of view,—the ac-
tion between an unspecified system of an ensemble and the bodies
represented by the external coördinates, is the action between a sys-
tem imperfectly determined with respect to phase and one which is
perfectly determined; while the interaction between two unspecified
systems belonging to different ensembles is the action between two
systems both of which are imperfectly determined with respect to
phase.∗

∗In the development of the subject, we shall find that this distinction corre-
sponds to the distinction in thermodynamics between mechanical and thermal
action.



statistical mechanics 179

We shall suppose the ensembles which we consider to be dis-
tributed in phase in the manner described in Chapter I, and
represented by the notations of that chapter, especially by the
index of probability of phase (η). There are therefore 2n inde-
pendent variations in the phases which constitute the ensembles
considered. This excludes ensembles like the microcanonical, in
which, as energy is constant, there are only 2n − 1 independent
variations of phase. This seems necessary for the purposes of a
general discussion. For although we may imagine a microcanon-
ical ensemble to have a permanent existence when isolated from
external influences, the effect of such influences would generally
be to destroy the uniformity of energy in the ensemble. Moreover,
since the microcanonical ensemble may be regarded as a limiting
case of such ensembles as are described in Chapter I, (and that
in more than one way, as shown in Chapter X,) the exclusion is
rather formal than real, since any properties which belong to the
microcanonical ensemble could easily be derived from those of the
ensembles of Chapter I, which in a certain sense may be regarded
as representing the general case.

Let us first consider the effect of variation of the external
coördinates. We have already had occasion to regard these quan-
tities as variable in the differentiation of certain equations relating
to ensembles distributed according to certain laws called canonical
or microcanonical. That variation of the external coördinates was,
however, only carrying the attention of the mind from an ensemble
with certain values of the external coördinates, and distributed
in phase according to some general law depending upon those
values, to another ensemble with different values of the external
coördinates, and with the distribution changed to conform to these
new values.
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What we have now to consider is the effect which would actually
result in the course of time in an ensemble of systems in which
the external coördinates should be varied in any arbitrary manner.
Let us suppose, in the first place, that these coördinates are varied
abruptly at a given instant, being constant both before and after
that instant. By the definition of the external coördinates it appears
that this variation does not affect the phase of any system of the
ensemble at the time when it takes place. Therefore it does not
affect the index of probability of phase (η) of any system, or the
average value of the index (η) at that time. And if these quantities
are constant in time before the variation of the external coördinates,
and after that variation, their constancy in time is not interrupted
by that variation. In fact, in the demonstration of the conservation
of probability of phase in Chapter I, the variation of the external
coördinates was not excluded.

But a variation of the external coördinates will in general disturb
a previously existing state of statistical equilibrium. For, although
it does not affect (at the first instant) the distribution-in-phase, it
does affect the condition necessary for equilibrium. This condition,
as we have seen in Chapter IV, is that the index of probability
of phase shall be a function of phase which is constant in time
for moving systems. Now a change in the external coördinates, by
changing the forces which act on the systems, will change the nature
of the functions of phase which are constant in time. Therefore, the
distribution in phase which was one of statistical equilibrium for the
old values of the external coördinates, will not be such for the new
values.

Now we have seen, in the last chapter, that when the distribu-
tion-in-phase is not one of statistical equilibrium, an ensemble of
systems may, and in general will, after a longer or shorter time,
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come to a state which may be regarded, if very small differences of
phase are neglected, as one of statistical equilibrium, and in which
consequently the average value of the index (η) is less than at first.
It is evident, therefore, that a variation of the external coördinates,
by disturbing a state of statistical equilibrium, may indirectly cause
a diminution, (in a certain sense at least,) of the value of η.

But if the change in the external coördinates is very small, the
change in the distribution necessary for equilibrium will in general
be correspondingly small. Hence, the original distribution in phase,
since it differs little from one which would be in statistical equi-
librium with the new values of the external coördinates, may be
supposed to have a value of η which differs by a small quantity of
the second order from the minimum value which characterizes the
state of statistical equilibrium. And the diminution in the average
index resulting in the course of time from the very small change in
the external coördinates, cannot exceed this small quantity of the
second order.

Hence also, if the change in the external coördinates of an en-
semble initially in statistical equilibrium consists in successive very
small changes separated by very long intervals of time in which the
disturbance of statistical equilibrium becomes sensibly effaced, the
final diminution in the average index of probability will in general
be negligible, although the total change in the external coördinates
is large. The result will be the same if the change in the external
coördinates takes place continuously but sufficiently slowly.

Even in cases in which there is no tendency toward the restora-
tion of statistical equilibrium in the lapse of time, a variation of
external coördinates which would cause, if it took place in a short
time, a great disturbance of a previous state of equilibrium, may, if
sufficiently distributed in time, produce no sensible disturbance of
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the statistical equilibrium.
Thus, in the case of three degrees of freedom, let the systems be

heavy points suspended by elastic massless cords, and let the en-
semble be distributed in phase with a density proportioned to some
function of the energy, and therefore in statistical equilibrium. For
a change in the external coördinates, we may take a horizontal mo-
tion of the point of suspension. If this is moved a given distance, the
resulting disturbance of the statistical equilibrium may evidently be
diminished indefinitely by diminishing the velocity of the point of
suspension. This will be true if the law of elasticity of the string
is such that the period of vibration is independent of the energy,
in which case there is no tendency in the course of time toward a
state of statistical equilibrium, as well as in the more general case,
in which there is a tendency toward statistical equilibrium.

That something of this kind will be true in general, the following
considerations will tend to show.

We define a path as the series of phases through which a system
passes in the course of time when the external coördinates have
fixed values. When the external coördinates are varied, paths are
changed. The path of a phase is the path to which that phase
belongs. With reference to any ensemble of systems we shall denote
by D |p the average value of the density-in-phase in a path. This
implies that we have a measure for comparing different portions
of the path. We shall suppose the time required to traverse any
portion of a path to be its measure for the purpose of determining
this average.

With this understanding, let us suppose that a certain ensemble
is in statistical equilibrium. In every element of extension-in-phase,
therefore, the density-in-phase D is equal to its path-average D |p.
Let a sudden small change be made in the external coördinates.
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The statistical equilibrium will be disturbed and we shall no longer
have D = D |p everywhere. This is not because D is changed, but

because D |p is changed, the paths being changed. It is evident that

if D > D |p in a part of a path, we shall have D < D |p in other
parts of the same path.

Now, if we should imagine a further change in the external
coördinates of the same kind, we should expect it to produce an
effect of the same kind. But the manner in which the second ef-
fect will be superposed on the first will be different, according as
it occurs immediately after the first change or after an interval of
time. If it occurs immediately after the first change, then in any
element of phase in which the first change produced a positive value
of D −D |p the second change will add a positive value to the first

positive value, and where D−D |p was negative, the second change
will add a negative value to the first negative value.

But if we wait a sufficient time before making the second change
in the external coördinates, so that systems have passed from ele-
ments of phase in which D−D |p was originally positive to elements
in which it was originally negative, and vice versa, (the systems
carrying with them the values of D − D |p,) the positive values of

D−D |p caused by the second change will be in part superposed on
negative values due to the first change, and vice versa.

The disturbance of statistical equilibrium, therefore, produced
by a given change in the values of the external coördinates may be
very much diminished by dividing the change into two parts sep-
arated by a sufficient interval of time, and a sufficient interval of
time for this purpose is one in which the phases of the individual
systems are entirely unlike the first, so that any individual system
is differently affected by the change, although the whole ensem-
ble is affected in nearly the same way. Since there is no limit to
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the diminution of the disturbance of equilibrium by division of the
change in the external coördinates, we may suppose as a general
rule that by diminishing the velocity of the changes in the external
coördinates, a given change may be made to produce a very small
disturbance of statistical equilibrium.

If we write η′ for the value of the average index of probability
before the variation of the external coördinates, and η′′ for the value
after this variation, we shall have in any case

η′′ ≤ η′

as the simple result of the variation of the external coördinates.
This may be compared with the thermodynamic theorem that the
entropy of a body cannot be diminished by mechanical (as distin-
guished from thermal) action.∗

If we have (approximate) statistical equilibrium between the
times t′ and t′′ (corresponding to η′ and η′′), we shall have approx-
imately

η′ = η′′,

which may be compared with the thermodynamic theorem that the
entropy of a body is not (sensibly) affected by mechanical action,
during which the body is at each instant (sensibly) in a state of
thermodynamic equilibrium.

Approximate statistical equilibrium may usually be attained by
a sufficiently slow variation of the external coördinates, just as ap-
proximate thermodynamic equilibrium may usually be attained by
sufficient slowness in the mechanical operations to which the body
is subject.

∗The correspondences to which the reader’s attention is called are between
−η and entropy, and between Θ and temperature.
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We now pass to the consideration of the effect on an ensem-
ble of systems which is produced by the action of other ensembles
with which it is brought into dynamical connection. In a previous
chapter∗ we have imagined a dynamical connection arbitrarily cre-
ated between the systems of two ensembles. We shall now regard
the action between the systems of the two ensembles as a result of
the variation of the external coördinates, which causes such varia-
tions of the internal coördinates as to bring the systems of the two
ensembles within the range of each other’s action.

Initially, we suppose that we have two separate ensembles of sys-
tems, E1 and E2. The numbers of degrees of freedom of the systems
in the two ensembles will be denoted by n1 and n2 respectively, and
the probability-coefficients by eη1 and eη2 . Now we may regard any
system of the first ensemble combined with any system of the sec-
ond as forming a single system of n1 + n2 degrees of freedom. Let
us consider the ensemble (E12) obtained by thus combining each
system of the first ensemble with each of the second.

At the initial moment, which may be specified by a single accent,
the probability-coefficient of any phase of the combined systems is
evidently the product of the probability-coefficients of the phases of
which it is made up. This may be expressed by the equation,

eη
′
12 = eη

′
1 eη

′
2 , (455)

or
η′12 = η′1 + η′2, (456)

which gives
η′12 = η′1 + η′2, (457)

∗See Chapter IV, page 41.



statistical mechanics 186

The forces tending to vary the internal coördinates of the com-
bined systems, together with those exerted by either system upon
the bodies represented by the coördinates called external, may be
derived from a single force-function, which, taken negatively, we
shall call the potential energy of the combined systems and denote
by ε12. But we suppose that initially none of the systems of the two
ensembles E1 and E2 come within range of each other’s action, so
that the potential energy of the combined system falls into two parts
relating separately to the systems which are combined. The same
is obviously true of the kinetic energy of the combined compound
system, and therefore of its total energy. This may be expressed by
the equation

ε′12 = ε′1 + ε′2, (458)

which gives
ε′12 = ε′1 + ε′2. (459)

Let us now suppose that in the course of time, owing to the
motion of the bodies represented by the coördinates called external,
the forces acting on the systems and consequently their positions
are so altered, that the systems of the ensembles E1 and E2 are
brought within range of each other’s action, and after such mutual
influence has lasted for a time, by a further change in the external
coördinates, perhaps a return to their original values, the systems
of the two original ensembles are brought again out of range of each
other’s action. Finally, then, at a time specified by double accents,
we shall have as at first

ε′′12 = ε′′1 + ε′′2. (460)
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But for the indices of probability we must write∗

η′′1 + η′′2 ≤ η′′12. (461)

The considerations adduced in the last chapter show that it is
safe to write

η′′12 ≤ η′12. (462)

We have therefore
η′′1 + η′′2 ≤ η′1 + η′2, (463)

which may be compared with the thermodynamic theorem that the
thermal contact of two bodies may increase but cannot diminish the
sum of their entropies.

Let us especially consider the case in which the two original
ensembles were both canonically distributed in phase with the re-
spective moduli Θ1 and Θ2. We have then, by Theorem III of Chap-
ter XI,

η′1 +
ε′1
Θ1

≤ η′′1 +
ε′′1
Θ1

, (464)

η′2 +
ε′2
Θ2

≤ η′′2 +
ε′′2
Θ2

. (465)

Whence with (463) we have

ε′1
Θ1

+
ε′2
Θ2

≤ ε′′1
Θ1

+
ε′′2
Θ2

(466)

or
ε′′1 − ε′1

Θ1

+
ε′′2 − ε′2

Θ2

≥ 0. (467)

∗See Chapter XI, Theorem VII.



statistical mechanics 188

If we write W for the average work done by the combined systems
on the external bodies, we have by the principle of the conservation
of energy

W = ε′12 − ε′′12 = ε′1 − ε′′1 + ε′2 − ε′′2. (468)

Now if W is negligible, we have

ε′′1 − ε′1 = −(ε′′2 − ε′2), (469)

and (467) shows that the ensemble which has the greater modulus
must lose energy. This result may be compared to the thermody-
namic principle, that when two bodies of different temperatures are
brought together, that which has the higher temperature will lose
energy.

Let us next suppose that the ensemble E2 is originally canoni-
cally distributed with the modulus Θ2, but leave the distribution of
the other arbitrary. We have, to determine the result of a similar
process,

η′′1 + η′′2 ≤ η′1 + η′2,

η′2 +
ε′2
Θ2

≤ η′′2 +
ε′′2
Θ2

.

Hence

η′′1 +
ε′2
Θ2

≤ η′1 +
ε′′2
Θ2

, (470)

which may be written

η′1 − η′′1 ≥
ε′2 − ε′′2

Θ2

. (471)

This may be compared with the thermodynamic principle that when
a body (which need not be in thermal equilibrium) is brought into
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thermal contact with another of a given temperature, the increase
of entropy of the first cannot be less (algebraically) than the loss
of heat by the second divided by its temperature. Where W is
negligible, we may write

η′′1 +
ε′′1
Θ2

≤ η′1 +
ε′1
Θ2

. (472)

Now, by Theorem III of Chapter XI, the quantity

η1 +
ε1
Θ2

(473)

has a minimum value when the ensemble to which η1 and ε1 relate
is distributed canonically with the modulus Θ2. If the ensemble
had originally this distribution, the sign < in (472) would be im-
possible. In fact, in this case, it would be easy to show that the
preceding formulae on which (472) is founded would all have the
sign =. But when the two ensembles are not both originally dis-
tributed canonically with the same modulus, the formulae indicate
that the quantity (473) may be diminished by bringing the ensem-
ble to which ε1 and η1 relate into connection with another which
is canonically distributed with modulus Θ2, and therefore, that by
repeated operations of this kind the ensemble of which the original
distribution was entirely arbitrary might be brought approximately
into a state of canonical distribution with the modulus Θ2. We
may compare this with the thermodynamic principle that a body
of which the original thermal state may be entirely arbitrary, may
be brought approximately into a state of thermal equilibrium with
any given temperature by repeated connections with other bodies
of that temperature.

Let us now suppose that we have a certain number of ensembles,
E0, E1, E2, etc., distributed canonically with the respective moduli
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Θ0, Θ1, Θ2, etc. By variation of the external coördinates of the en-
semble E0, let it be brought into connection with E1, and then let
the connection be broken. Let it then be brought into connection
with E2, and then let that connection be broken. Let this process
be continued with respect to the remaining ensembles. We do not
make the assumption, as in some cases before, that the work con-
nected with the variation of the external coördinates is a negligible
quantity. On the contrary, we wish especially to consider the case
in which it is large. In the final state of the ensemble E0, let us
suppose that the external coördinates have been brought back to
their original values, and that the average energy (ε0) is the same
as at first.

In our usual notations, using one and two accents to distinguish
original and final values, we get by repeated applications of the
principle expressed in (463)

η′0 + η′1 + η′2 + etc. ≥ η′′0 + η′′1 + η′′2 + etc. (474)

But by Theorem III of Chapter XI,

η′′0 +
ε′′0
Θ0

≥ η′0 +
ε′0
Θ0

, (475)

η′′1 +
ε′′1
Θ1

≥ η′1 +
ε′1
Θ1

, (476)

η′′2 +
ε′′2
Θ2

≥ η′2 +
ε′2
Θ2

. (477)

Hence

ε′′0
Θ0

+
ε′′1
Θ1

+
ε′′2
Θ2

+ etc. ≥ ε′0
Θ0

+
ε′1
Θ1

+
ε′2
Θ2

+ etc., (478)
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or, since

ε′0 = ε′′0,

0 ≥ ε′1 − ε′′1
Θ1

+
ε′2 − ε′′2

Θ2

+ etc. (479)

If we write W for the average work done on the bodies represented
by the external coördinates, we have

ε′1 − ε′′1 + ε′2 − ε′′2 + etc. = W. (480)

If E0, E1, and E2 are the only ensembles, we have

W ≤ Θ1 −Θ2

Θ1

(ε′1 − ε′′1). (481)

It will be observed that the relations expressed in the last three for-
mulae between W , ε′1−ε′′1, ε′2−ε′′2, etc., and Θ1, Θ2, etc. are precisely
those which hold in a Carnot’s cycle for the work obtained, the en-
ergy lost by the several bodies which serve as heaters or coolers,
and their initial temperatures.

It will not escape the reader’s notice, that while from one point
of view the operations which are here described are quite beyond
our powers of actual performance, on account of the impossibility
of handling the immense number of systems which are involved, yet
from another point of view the operations described are the most
simple and accurate means of representing what actually takes place
in our simplest experiments in thermodynamics. The states of the
bodies which we handle are certainly not known to us exactly. What
we know about a body can generally be described most accurately
and most simply by saying that it is one taken at random from a
great number (ensemble) of bodies which are completely described.



statistical mechanics 192

If we bring it into connection with another body concerning which
we have a similar limited knowledge, the state of the two bodies is
properly described as that of a pair of bodies taken from a great
number (ensemble) of pairs which are formed by combining each
body of the first ensemble with each of the second.

Again, when we bring one body into thermal contact with an-
other, for example, in a Carnot’s cycle, when we bring a mass of
fluid into thermal contact with some other body from which we wish
it to receive heat, we may do it by moving the vessel containing the
fluid. This motion is mathematically expressed by the variation of
the coördinates which determine the position of the vessel. We al-
low ourselves for the purposes of a theoretical discussion to suppose
that the walls of this vessel are incapable of absorbing heat from
the fluid. Yet while we exclude the kind of action which we call
thermal between the fluid and the containing vessel, we allow the
kind which we call work in the narrower sense, which takes place
when the volume of the fluid is changed by the motion of a piston.
This agrees with what we have supposed in regard to the external
coördinates, which we may vary in any arbitrary manner, and are
in this entirely unlike the coördinates of the second ensemble with
which we bring the first into connection.

When heat passes in any thermodynamic experiment between
the fluid principally considered and some other body, it is actu-
ally absorbed and given out by the walls of the vessel, which will
retain a varying quantity. This is, however, a disturbing circum-
stance, which we suppose in some way made negligible, and actu-
ally neglect in a theoretical discussion. In our case, we suppose
the walls incapable of absorbing energy, except through the motion
of the external coördinates, but that they allow the systems which
they contain to act directly on one another. Properties of this kind
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are mathematically expressed by supposing that in the vicinity of
a certain surface, the position of which is determined by certain
(external) coördinates, particles belonging to the system in ques-
tion experience a repulsion from the surface increasing so rapidly
with nearness to the surface that an infinite expenditure of energy
would be required to carry them through it. It is evident that two
systems might be separated by a surface or surfaces exerting the
proper forces, and yet approach each other closely enough to exert
mechanical action on each other.



XIV.

DISCUSSION OF THERMODYNAMIC ANALOGIES.

If we wish to find in rational mechanics an a priori foundation for
the principles of thermodynamics, we must seek mechanical defini-
tions of temperature and entropy. The quantities thus defined must
satisfy (under conditions and with limitations which again must be
specified in the language of mechanics) the differential equation

dε = T dη − A1 da1 − A2 da2 − etc., (482)

where ε, T , and η denote the energy, temperature, and entropy of
the system considered, and A1 da1, etc., the mechanical work (in
the narrower sense in which the term is used in thermodynamics,
i.e., with exclusion of thermal action) done upon external bodies.

This implies that we are able to distinguish in mechanical terms
the thermal action of one system on another from that which we
call mechanical in the narrower sense, if not indeed in every case in
which the two may be combined, at least so as to specify cases of
thermal action and cases of mechanical action.

Such a differential equation moreover implies a finite equation
between ε, η, and a1, a2, etc., which may be regarded as funda-
mental in regard to those properties of the system which we call
thermodynamic, or which may be called so from analogy. This
fundamental thermodynamic equation is determined by the fun-
damental mechanical equation which expresses the energy of the
system as function of its momenta and coördinates with those ex-
ternal coördinates (a1, a2, etc.) which appear in the differential ex-
pression of the work done on external bodies. We have to show the
mathematical operations by which the fundamental thermodynamic
equation, which in general is an equation of few variables, is derived
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from the fundamental mechanical equation, which in the case of the
bodies of nature is one of an enormous number of variables.

We have also to enunciate in mechanical terms, and to prove,
what we call the tendency of heat to pass from a system of higher
temperature to one of lower, and to show that this tendency vanishes
with respect to systems of the same temperature.

At least, we have to show by a priori reasoning that for such
systems as the material bodies which nature presents to us, these
relations hold with such approximation that they are sensibly true
for human faculties of observation. This indeed is all that is re-
ally necessary to establish the science of thermodynamics on an
a priori basis. Yet we will naturally desire to find the exact ex-
pression of those principles of which the laws of thermodynamics
are the approximate expression. A very little study of the statisti-
cal properties of conservative systems of a finite number of degrees
of freedom is sufficient to make it appear, more or less distinctly,
that the general laws of thermodynamics are the limit toward which
the exact laws of such systems approximate, when their number of
degrees of freedom is indefinitely increased. And the problem of
finding the exact relations, as distinguished from the approximate,
for systems of a great number of degrees of freedom, is practically
the same as that of finding the relations which hold for any number
of degrees of freedom, as distinguished from those which have been
established on an empirical basis for systems of a great number of
degrees of freedom.

The enunciation and proof of these exact laws, for systems of
any finite number of degrees of freedom, has been a principal object
of the preceding discussion. But it should be distinctly stated that,
if the results obtained when the numbers of degrees of freedom are
enormous coincide sensibly with the general laws of thermodynam-
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ics, however interesting and significant this coincidence may be, we
are still far from having explained the phenomena of nature with
respect to these laws. For, as compared with the case of nature,
the systems which we have considered are of an ideal simplicity.
Although our only assumption is that we are considering conserva-
tive systems of a finite number of degrees of freedom, it would seem
that this is assuming far too much, so far as the bodies of nature
are concerned. The phenomena of radiant heat, which certainly
should not be neglected in any complete system of thermodynam-
ics, and the electrical phenomena associated with the combination
of atoms, seem to show that the hypothesis of systems of a finite
number of degrees of freedom is inadequate for the explanation of
the properties of bodies.

Nor do the results of such assumptions in every detail appear
to agree with experience. We should expect, for example, that a
diatomic gas, so far as it could be treated independently of the
phenomena of radiation, or of any sort of electrical manifestations,
would have six degrees of freedom for each molecule. But the be-
havior of such a gas seems to indicate not more than five.

But although these difficulties, long recognized by physicists,∗

seem to prevent, in the present state of science, any satisfactory
explanation of the phenomena of thermodynamics as presented to
us in nature, the ideal case of systems of a finite number of degrees
of freedom remains as a subject which is certainly not devoid of a
theoretical interest, and which may serve to point the way to the
solution of the far more difficult problems presented to us by nature.
And if the study of the statistical properties of such systems gives
us an exact expression of laws which in the limiting case take the
form of the received laws of thermodynamics, its interest is so much

∗See Boltzmann, Sitzb. der Wiener Akad., Bd. LXIII, S. 418, (1871).
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the greater.
Now we have defined what we have called the modulus (Θ) of

an ensemble of systems canonically distributed in phase, and what
we have called the index of probability (η) of any phase in such an
ensemble. It has been shown that between the modulus (Θ), the
external coördinates (a1, etc.), and the average values in the ensem-
ble of the energy (ε), the index of probability (η), and the external
forces (A1, etc.) exerted by the systems, the following differential
equation will hold:

dε = −Θ dη − A1 da1 − A2 da2 − etc. (483)

This equation, if we neglect the sign of averages, is identical in form
with the thermodynamic equation (482), the modulus (Θ) corre-
sponding to temperature, and the index of probability of phase with
its sign reversed corresponding to entropy.∗

We have also shown that the average square of the anomalies of ε,
that is, of the deviations of the individual values from the average,
is in general of the same order of magnitude as the reciprocal of the
number of degrees of freedom, and therefore to human observation
the individual values are indistinguishable from the average values
when the number of degrees of freedom is very great.† In this case
also the anomalies of η are practically insensible. The same is true
of the anomalies of the external forces (A1, etc.), so far as these
are the result of the anomalies of energy, so that when these forces
are sensibly determined by the energy and the external coördinates,
and the number of degrees of freedom is very great, the anomalies
of these forces are insensible.

∗See Chapter IV, pages 49, 51.
†See Chapter VII, pages 85–87.
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The mathematical operations by which the finite equation be-
tween ε, η, and a1, etc., is deduced from that which gives the
energy (ε) of a system in terms of the momenta (p1, . . . pn) and
coördinates both internal (q1, . . . qn) and external (a1, etc.), are
indicated by the equation

e−
ψ
Θ =

∫
all· · ·

phases

∫
e−

ε
Θ dq1 . . . dqn dp1 . . . dpn, (484)

where
ψ = Θη + ε.

We have also shown that when systems of different ensembles
are brought into conditions analogous to thermal contact, the aver-
age result is a passage of energy from the ensemble of the greater
modulus to that of the less,∗ or in case of equal moduli, that we have
a condition of statistical equilibrium in regard to the distribution
of energy.†

Propositions have also been demonstrated analogous to those in
thermodynamics relating to a Carnot’s cycle,‡ or to the tendency of
entropy to increase,§ especially when bodies of different temperature
are brought into contact.¶

We have thus precisely defined quantities, and rigorously demon-
strated propositions, which hold for any number of degrees of free-
dom, and which, when the number of degrees of freedom (n) is
enormously great, would appear to human faculties as the quanti-
ties and propositions of empirical thermodynamics.

∗See Chapter XIII, page 187.
†See Chapter IV, pages 39–41.
‡See Chapter XIII, pages 189, 191.
§See Chapter XII, pages 168–177.
¶See Chapter XIII, page 186.
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It is evident, however, that there may be more than one quantity
defined for finite values of n, which approach the same limit, when
n is increased indefinitely, and more than one proposition relating to
finite values of n, which approach the same limiting form for n =∞.
There may be therefore, and there are, other quantities which may
be thought to have some claim to be regarded as temperature and
entropy with respect to systems of a finite number of degrees of
freedom.

The definitions and propositions which we have been considering
relate essentially to what we have called a canonical ensemble of
systems. This may appear a less natural and simple conception
than what we have called a microcanonical ensemble of systems, in
which all have the same energy, and which in many cases represents
simply the time-ensemble, or ensemble of phases through which a
single system passes in the course of time.

It may therefore seem desirable to find definitions and proposi-
tions relating to these microcanonical ensembles, which shall corre-
spond to what in thermodynamics are based on experience. Now
the differential equation

dε = e−φV d log V − A1 |ε da1 − A2 |ε da2 − etc., (485)

which has been demonstrated in Chapter X, and which relates to
a microcanonical ensemble, A1 |ε denoting the average value of A1

in such an ensemble, corresponds precisely to the thermodynamic
equation, except for the sign of average applied to the external
forces. But as these forces are not entirely determined by the energy
with the external coördinates, the use of average values is entirely
germane to the subject, and affords the readiest means of getting
perfectly determined quantities. These averages, which are taken
for a microcanonical ensemble, may seem from some points of view
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a more simple and natural conception than those which relate to
a canonical ensemble. Moreover, the energy, and the quantity cor-
responding to entropy, are free from the sign of average in this
equation.

The quantity in the equation which corresponds to entropy
is log V , the quantity V being defined as the extension-in-phase
within which the energy is less than a certain limiting value (ε).
This is certainly a more simple conception than the average value in
a canonical ensemble of the index of probability of phase. Log V has
the property that when it is constant

dε = −A1 |ε da1 − A2 |ε da2 + etc., (486)

which closely corresponds to the thermodynamic property of en-
tropy, that when it is constant

dε = −A1 da1 − A2 da2 + etc. (487)

The quantity in the equation which corresponds to temperature is
e−φV , or dε/d log V . In a canonical ensemble, the average value of
this quantity is equal to the modulus, as has been shown by different
methods in Chapters IX and X.

In Chapter X it has also been shown that if the systems of
a microcanonical ensemble consist of parts with separate energies,
the average value of e−φV or any part is equal to its average value
for any other part, and to the uniform value of the same expression
for the whole ensemble. This corresponds to the theorem in the
theory of heat that in case of thermal equilibrium the temperatures
of the parts of a body are equal to one another and to that of the
whole body. Since the energies of the parts of a body cannot be
supposed to remain absolutely constant, even where this is the case
with respect to the whole body, it is evident that if we regard the
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temperature as a function of the energy, the taking of average or
of probable values, or some other statistical process, must be used
with reference to the parts, in order to get a perfectly definite value
corresponding to the notion of temperature.

It is worthy of notice in this connection that the average value
of the kinetic energy, either in a microcanonical ensemble, or in a
canonical, divided by one half the number of degrees of freedom, is
equal to e−φV , or to its average value, and that this is true not only
of the whole system which is distributed either microcanonically
or canonically, but also of any part, although the corresponding
theorem relating to temperature hardly belongs to empirical ther-
modynamics, since neither the (inner) kinetic energy of a body, nor
its number of degrees of freedom is immediately cognizable to our
faculties, and we meet the gravest difficulties when we endeavor to
apply the theorem to the theory of gases, except in the simplest
case, that of the gases known as monatomic.

But the correspondence between e−φV or dε/d log V and tem-
perature is imperfect. If two isolated systems have such energies
that

dε1
d log V1

=
dε2

d log V2

,

and the two systems are regarded as combined to form a third sys-
tem with energy

ε12 = ε1 + ε2,

we shall not have in general

dε12

d log V12

=
dε1

d log V1

=
dε2

d log V2

,

as analogy with temperature would require. In fact, we have seen
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that
dε12

d log V12

=
dε1

d log V1

∣∣∣∣
ε12

=
dε2

d log V2

∣∣∣∣
ε12

,

where the second and third members of the equation denote average
values in an ensemble in which the compound system is microcanon-
ically distributed in phase. Let us suppose the two original systems
to be identical in nature. Then

ε1 = ε2 = ε1 |ε12
= ε2 |ε12

.

The equation in question would require that

dε1
d log V1

=
dε1

d log V1

∣∣∣∣
ε12

,

i.e., that we get the same result, whether we take the value of
dε1/d log V1 determined for the average value of ε1 in the ensemble,
or take the average value of dε1/d log V1. This will be the case
where dε1/d log V1 is a linear function of ε1. Evidently this does
not constitute the most general case. Therefore the equation in
question cannot be true in general. It is true, however, in some
very important particular cases, as when the energy is a quadratic
function of the p’s and q’s, or of the p’s alone.∗ When the equation
holds, the case is analogous to that of bodies in thermodynamics
for which the specific heat for constant volume is constant.

Another quantity which is closely related to temperature is
dφ/dε. It has been shown in Chapter IX that in a canonical en-
semble, if n > 2, the average value of dφ/dε is 1/Θ, and that the

∗This last case is important on account of its relation to the theory of gases,
although it must in strictness be regarded as a limit of possible cases, rather
than as a case which is itself possible.



statistical mechanics 203

most common value of the energy in the ensemble is that for which
dφ/dε = 1/Θ. The first of these properties may be compared with
that of dε/d log V , which has been seen to have the average value Θ
in a canonical ensemble, without restriction in regard to the number
of degrees of freedom.

With respect to microcanonical ensembles also, dφ/dε has a
property similar to what has been mentioned with respect to
dε/d log V . That is, if a system microcanonically distributed in
phase consists of two parts with separate energies, and each with
more than two degrees of freedom, the average values in the ensem-
ble of dφ/dε for the two parts are equal to one another and to the
value of same expression for the whole. In our usual notations

dφ1

dε1

∣∣∣∣
ε12

=
dφ2

dε2

∣∣∣∣
ε12

=
dφ12

dε12

if n1 > 2, and n2 > 2.
This analogy with temperature has the same incompleteness

which was noticed with respect to dε/d log V , viz., if two systems
have such energies (ε1 and ε2) that

dφ1

dε1
=
dφ2

dε2
,

and they are combined to form a third system with energy

ε12 = ε1 + ε2,

we shall not have in general

dφ12

dε12

=
dφ1

dε1
=
dφ2

dε2
.
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Thus, if the energy is a quadratic function of the p’s and q’s, we
have∗

dφ1

dε1
=
n1 − 1

ε1
,

dφ2

dε2
=
n2 − 1

ε2
,

dφ12

dε12

=
n12 − 1

ε12

=
n1 + n2 − 1

ε1 + ε2
,

where n1, n2, n12, are the numbers of degrees of freedom of the
separate and combined systems. But

dφ1

dε1
=
dφ2

dε2
=
n1 + n2 − 2

ε1 + ε2
.

If the energy is a quadratic function of the p’s alone, the case would
be the same except that we should have 1

2
n1, 1

2
n2, 1

2
n12, instead of

n1, n2, n12. In these particular cases, the analogy between dε/d log V
and temperature would be complete, as has already been remarked.
We should have

dε1
d log V1

=
ε1
n1

,
dε2

d log V2

=
ε2
n2

,

dε12

d log V12

=
ε12

n12

=
dε1

d log V1

=
dε2

d log V2

,

when the energy is a quadratic function of the p’s and q’s, and
similar equations with 1

2
n1, 1

2
n2, 1

2
n12, instead of n1, n2, n12, when

the energy is a quadratic function of the p’s alone.
More characteristic of dφ/dε are its properties relating to most

probable values of energy. If a system having two parts with sep-
arate energies and each with more than two degrees of freedom is

∗See foot-note on page 109. We have here made the least value of the energy
consistent with the values of the external coördinates zero instead of εα, as is
evidently allowable when the external coördinates are supposed invariable.
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microcanonically distributed in phase, the most probable division
of energy between the parts, in a system taken at random from the
ensemble, satisfies the equation

dφ1

dε1
=
dφ2

dε2
, (488)

which corresponds to the thermodynamic theorem that the distri-
bution of energy between the parts of a system, in case of thermal
equilibrium, is such that the temperatures of the parts are equal.

To prove the theorem, we observe that the fractional part of the
whole number of systems which have the energy of one part (ε1)
between the limits ε′1 and ε′′1 is expressed by

e−φ12

∫ ε′′1

ε′1

eφ1+φ2 dε1,

where the variables are connected by the equation

ε1 + ε2 = constant = e12.

The greatest value of this expression, for a constant infinitesimal
value of the difference ε′′1 − ε′1, determines a value of ε1, which we
may call its most probable value. This depends on the greatest
possible value of φ1 + φ2. Now if n1 > 2, and n2 > 2, we shall
have φ1 = −∞ for the least possible value of ε1, and φ2 = −∞
for the least possible value of ε2. Between these limits φ1 and φ2

will be finite and continuous. Hence φ1 + φ2 will have a maximum
satisfying the equation (488).

But if n1 ≤ 2, or n2 ≤ 2, dφ1/dε1 or dφ2/2ε2 may be negative, or
zero, for all values of ε1 or ε2, and can hardly be regarded as having
properties analogous to temperature.
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It is also worthy of notice that if a system which is microcanon-
ically distributed in phase has three parts with separate energies,
and each with more than two degrees of freedom, the most probable
division of energy between these parts satisfies the equation

dφ1

dε1
=
dφ2

dε2
=
dφ3

dε3
.

That is, this equation gives the most probable set of values of ε1, ε2,
and ε3. But it does not give the most probable value of ε1, or of ε2, or
of ε3. Thus, if the energies are quadratic functions of the p’s and q’s,
the most probable division of energy is given by the equation

n1 − 1

ε1
=
n2 − 1

ε2
=
n3 − 1

ε3
.

But the most probable value of ε1 is given by

n1 − 1

ε1
=
n2 + n3 − 1

ε2 + ε3
,

while the preceding equations give

n1 − 1

ε1
=
n2 + n3 − 2

ε2 + ε3
.

These distinctions vanish for very great values of n1, n2, n3. For
small values of these numbers, they are important. Such facts seem
to indicate that the consideration of the most probable division of
energy among the parts of a system does not afford a convenient
foundation for the study of thermodynamic analogies in the case of
systems of a small number of degrees of freedom. The fact that a
certain division of energy is the most probable has really no especial
physical importance, except when the ensemble of possible divisions
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are grouped so closely together that the most probable division may
fairly represent the whole. This is in general the case, to a very close
approximation, when n is enormously great; it entirely fails when
n is small.

If we regard dφ/dε as corresponding to the reciprocal of temper-
ature, or, in other words, dε/dφ as corresponding to temperature,
φ will correspond to entropy. It has been defined as log(dV/dε). In
the considerations on which its definition is founded, it is therefore
very similar to log V . We have seen that dφ/d log V approaches the
value unity when n is very great.∗

To form a differential equation on the model of the thermody-
namic equation (482), in which dε/dφ shall take the place of tem-
perature, and φ of entropy, we may write

dε =

(
dε

dφ

)
α

dφ+

(
dε

da1

)
φ,α

da1 +

(
dε

da2

)
φ,α

da2 + etc., (489)

or

dφ =
dφ

dε
dε+

dφ

da1

da1 +
dφ

da2

da2 + etc. (490)

With respect to the differential coefficients in the last equation,
which corresponds exactly to (482) solved with respect to dη, we
have seen that their average values in a canonical ensemble are
equal to 1/Θ, and the averages of A1/Θ, A2/Θ, etc.† We have also
seen that dε/dφ (or dφ/dε) has relations to the most probable values
of energy in parts of a microcanonical ensemble. That (dε/da1)φ,α,
etc., have properties somewhat analogous, may be shown as follows.

In a physical experiment, we measure a force by balancing it
against another. If we should ask what force applied to increase or

∗See Chapter X, pages 141, 142.
†See Chapter IX, equations (321), (327).
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diminish a1 would balance the action of the systems, it would be
one which varies with the different systems. But we may ask what
single force will make a given value of a1 the most probable, and we
shall find that under certain conditions (dε/da1)φ,α represents that
force.

To make the problem definite, let us consider a system con-
sisting of the original system together with another having the
coördinates a1, a2, etc., and forces A′1, A′2, etc., tending to in-
crease those coördinates. These are in addition to the forces A1,
A2, etc., exerted by the original system, and are derived from a
force-function (−ε′q) by the equations

A′1 = −
dε′q
da1

, A′2 = −
dε′q
da2

, etc.

For the energy of the whole system we may write

E = ε+ ε′q + 1
2
m1ȧ

2
1 + 1

2
m2ȧ

2
2 + etc.,

and for the extension-in-phase of the whole system within any limits∫
· · ·
∫
dp1 . . . dqn da1m1 dȧ1 da2m2 dȧ2 . . . ,

or ∫
· · ·
∫
eφ dε da1m1 dȧ1 da2m2 dȧ2 . . . ,

or again ∫
· · ·
∫
eφ dE da1m1 dȧ1 da2m2 dȧ2 . . . ,

since dε = dE, when a1, ȧ1, a2, ȧ2, etc., are constant. If the limits
are expressed by E and E + dE, a1 and a1 + da1, ȧ1 and ȧ1 + dȧ1,
etc., the integral reduces to

eφ dE da1m1 dȧ1 da2m2 dȧ2 . . . .
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The values of a1, ȧ1, a2, ȧ2, etc., which make this expression a
maximum for constant values of the energy of the whole system
and of the differentials dE, da1, dȧ1, etc., are what may be called
the most probable values of a1, ȧ1, etc., in an ensemble in which the
whole system is distributed microcanonically.

To determine these values we have

deφ = 0,

when
d(ε+ ε′q + 1

2
m1ȧ

2
1 + 1

2
m2ȧ

2
2 + etc.) = 0.

That is,
dφ = 0,

when(
dε

dφ

)
α

dφ+

(
dε

da1

)
φ,α

da1 − A′1 da1 + etc. +m1ȧ1 dȧ1 + etc. = 0.

This requires
ȧ1 = 0, ȧ2 = 0, etc.

and (
dε

da1

)
φ,α

= A′1,

(
dε

da2

)
φ,α

= A′2, etc.

This shows that for any given values of E, a1, a2, etc.

(
dε

da1

)
φ,α

,(
dε

da2

)
φ,α

, etc., represent the forces (in the generalized sense) which

the external bodies would have to exert to make these values of a1,
a2, etc., the most probable under the conditions specified. When the
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differences of the external forces which are exerted by the different
systems are negligible, −(dε/da1)φ,α etc., represent these forces.

It is certainly in the quantities relating to a canonical ensemble,
ε, Θ, η, A1, etc., a1, etc., that we find the most complete correspon-
dence with the quantities of the thermodynamic equation (482).
Yet the conception itself of the canonical ensemble may seem to
some artificial, and hardly germane to a natural exposition of the

subject; and the quantities ε,
dε

d log V
, log V , A1 |ε, etc., a1, etc.,

or ε,
dε

dφ
, φ,

(
dε

da1

)
φ,α

, etc., a1, etc., which are closely related to

ensembles of constant energy, and to average and most probable
values in such ensembles, and most of which are defined without
reference to any ensemble, may appear the most natural analogues
of the thermodynamic quantities.

In regard to the naturalness of seeking analogies with the ther-
modynamic behavior of bodies in canonical or microcanonical en-
sembles of systems, much will depend upon how we approach the
subject, especially upon the question whether we regard energy or
temperature as an independent variable.

It is very natural to take energy for an independent variable
rather than temperature, because ordinary mechanics furnishes us
with a perfectly defined conception of energy, whereas the idea of
something relating to a mechanical system and corresponding to
temperature is a notion but vaguely defined. Now if the state of
a system is given by its energy and the external coördinates, it
is incompletely defined, although its partial definition is perfectly
clear as far as it goes. The ensemble of phases microcanonically
distributed, with the given values of the energy and the external
coördinates, will represent the imperfectly defined system better
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than any other ensemble or single phase. When we approach the
subject from this side, our theorems will naturally relate to average
values, or most probable values, in such ensembles.

In this case, the choice between the variables of (485) or of (489)
will be determined partly by the relative importance which is at-
tached to average and probable values. It would seem that in gen-
eral average values are the most important, and that they lend
themselves better to analytical transformations. This consideration
would give the preference to the system of variables in which log V
is the analogue of entropy. Moreover, if we make φ the analogue of
entropy, we are embarrassed by the necessity of making numerous
exceptions for systems of one or two degrees of freedom.

On the other hand, the definition of φ may be regarded as a lit-
tle more simple than that of log V , and if our choice is determined
by the simplicity of the definitions of the analogues of entropy and
temperature, it would seem that the φ system should have the pref-
erence. In our definition of these quantities, V was defined first,
and eφ derived from V by differentiation. This gives the relation
of the quantities in the most simple analytical form. Yet so far as
the notions are concerned, it is perhaps more natural to regard v
as derived from eφ by integration. At all events, eφ may be defined
independently of V , and its definition may be regarded as more
simple as not requiring the determination of the zero from which
V is measured, which sometimes involves questions of a delicate na-
ture. In fact, the quantity eφ may exist, when the definition of V
becomes illusory for practical purposes, as the integral by which it
is determined becomes infinite.

The case is entirely different, when we regard the temperature
as an independent variable, and we have to consider a system which
is described as having a certain temperature and certain values for
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the external coördinates. Here also the state of the system is not
completely defined, and will be better represented by an ensemble
of phases than by any single phase. What is the nature of such an
ensemble as will best represent the imperfectly defined state?

When we wish to give a body a certain temperature, we place it
in a bath of the proper temperature, and when we regard what we
call thermal equilibrium as established, we say that the body has
the same temperature as the bath. Perhaps we place a second body
of standard character, which we call a thermometer, in the bath,
and say that the first body, the bath, and the thermometer, have
all the same temperature.

But the body under such circumstances, as well as the bath, and
the thermometer, even if they were entirely isolated from external
influences (which it is convenient to suppose in a theoretical discus-
sion), would be continually changing in phase, and in energy as well
as in other respects, although our means of observation are not fine
enough to perceive these variations.

The series of phases through which the whole system runs in the
course of time may not be entirely determined by the energy, but
may depend on the initial phase in other respects. In such cases the
ensemble obtained by the microcanonical distribution of the whole
system, which includes all possible time-ensembles combined in the
proportion which seems least arbitrary, will represent better than
any one time-ensemble the effect of the bath. Indeed a single time-
ensemble, when it is not also a microcanonical ensemble, is too
ill-defined a notion to serve the purposes of a general discussion.
We will therefore direct our attention, when we suppose the body
placed in a bath, to the microcanonical ensemble of phases thus
obtained.

If we now suppose the quantity of the substance forming the
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bath to be increased, the anomalies of the separate energies of the
body and of the thermometer in the microcanonical ensemble will
be increased, but not without limit. The anomalies of the energy of
the bath, considered in comparison with its whole energy, diminish
indefinitely as the quantity of the bath is increased, and become
in a sense negligible, when the quantity of the bath is sufficiently
increased. The ensemble of phases of the body, and of the ther-
mometer, approach a standard form as the quantity of the bath is
indefinitely increased. This limiting form is easily shown to be what
we have described as the canonical distribution.

Let us write ε for the energy of the whole system consisting of
the body first mentioned, the bath, and the thermometer (if any),
and let us first suppose this system to be distributed canonically
with the modulus Θ. We have by (205)

(ε− ε)2 = Θ2 dε

dΘ
,

and since

εp =
n

2
Θ,

dε

dΘ
=
n

2

dε

dεp
.

If we write ∆ε for the anomaly of mean square, we have

(∆ε)2 = (ε− ε)2.

If we set

∆Θ =
dΘ

dε
dε,

∆Θ will represent approximately the increase of Θ which would
produce an increase in the average value of the energy equal to its
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anomaly of mean square. Now these equations give

(∆Θ)2 =
2Θ2

n

dεp
dε
,

which shows that we may diminish ∆Θ indefinitely by increasing
the quantity of the bath.

Now our canonical ensemble consists of an infinity of micro-
canonical ensembles, which differ only in consequence of the differ-
ent values of the energy which is constant in each. If we consider
separately the phases of the first body which occur in the canonical
ensemble of the whole system, these phases will form a canonical
ensemble of the same modulus. This canonical ensemble of phases
of the first body will consist of parts which belong to the different
microcanonical ensembles into which the canonical ensemble of the
whole system is divided.

Let us now imagine that the modulus of the principal canonical
ensemble is increased by 2 ∆Θ, and its average energy by 2 ∆ε.
The modulus of the canonical ensemble of the phases of the first
body considered separately will be increased by 2 ∆Θ. We may
regard the infinity of microcanonical ensembles into which we have
divided the principal canonical ensemble as each having its energy
increased by 2 ∆ε. Let us see how the ensembles of phases of the
first body contained in these microcanonical ensembles are affected.
We may assume that they will all be affected in about the same
way, as all the differences which come into account may be treated
as small. Therefore, the canonical ensemble formed by taking them
together will also be affected in the same way. But we know how
this is affected. It is by the increase of its modulus by 2 ∆Θ, a
quantity which vanishes when the quantity of the bath is indefinitely
increased.
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In the case of an infinite bath, therefore, the increase of the en-
ergy of one of the microcanonical ensembles by 2 ∆ε, produces a
vanishing effect on the distribution in energy of the phases of the
first body which it contains. But 2 ∆ε is more than the average
difference of energy between the microcanonical ensembles. The
distribution in energy of these phases is therefore the same in the
different microcanonical ensembles, and must therefore be canoni-
cal, like that of the ensemble which they form when taken together.∗

As a general theorem, the conclusion may be expressed in the
words:—If a system of a great number of degrees of freedom is
microcanonically distributed in phase, any very small part of it may
be regarded as canonically distributed.†

It would seem, therefore, that a canonical ensemble of phases is
what best represents, with the precision necessary for exact mathe-
matical reasoning, the notion of a body with a given temperature, if
we conceive of the temperature as the state produced by such pro-
cesses as we actually use in physics to produce a given temperature.
Since the anomalies of the body increase with the quantity of the
bath, we can only get rid of all that is arbitrary in the ensemble of
phases which is to represent the notion of a body of a given temper-

∗In order to appreciate the above reasoning, it should be understood that
the differences of energy which occur in the canonical ensemble of phases of the
first body are not here regarded as vanishing quantities. To fix one’s ideas, one
may imagine that he has the fineness of perception to make these differences
seem large. The difference between the part of these phases which belong to
one microcanonical ensemble of the whole system and the part which belongs to
another would still be imperceptible, when the quantity of the bath is sufficiently
increased.

†It is assumed—and without this assumption the theorem would have no
distinct meaning—that the part of the ensemble considered may be regarded
as having separate energy.
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ature by making the bath infinite, which brings us to the canonical
distribution.

A comparison of temperature and entropy with their analogues
in statistical mechanics would be incomplete without a considera-
tion of their differences with respect to units and zeros, and the
numbers used for their numerical specification. If we apply the no-
tions of statistical mechanics to such bodies as we usually consider
in thermodynamics, for which the kinetic energy is of the same or-
der of magnitude as the unit of energy, but the number of degrees of
freedom is enormous, the values of Θ, dε/d log V , and dε/dφ will be
of the same order of magnitude as 1/n, and the variable part of η,
log V , and φ will be of the same order of magnitude as n.∗ If these
quantities, therefore, represent in any sense the notions of tempera-
ture and entropy, they will nevertheless not be measured in units of
the usual order of magnitude,—a fact which must be borne in mind
in determining what magnitudes may be regarded as insensible to
human observation.

Now nothing prevents our supposing energy and time in our sta-
tistical formulae to be measured in such units as may be convenient
for physical purposes. But when these units have been chosen, the
numerical values of Θ, dε/d log V , dε/dφ, η, log V , φ, are entirely
determined,† and in order to compare them with temperature and
entropy, the numerical values of which depend upon an arbitrary
unit, we must multiply all values of Θ, dε/d log V , dε/dφ by a con-
stant (K), and divide all values of η, log V , and φ by the same

∗See equations (124), (288), (289), and (314); also page 125.
†The unit of time only affects the last three quantities, and these only by

an additive constant, which disappears (with the additive constant of entropy),
when differences of entropy are compared with their statistical analogues. See
page 20.
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constant. This constant is the same for all bodies, and depends
only on the units of temperature and energy which we employ. For
ordinary units it is of the same order of magnitude as the numbers
of atoms in ordinary bodies.

We are not able to determine the numerical value of K, as it
depends on the number of molecules in the bodies with which we
experiment. To fix our ideas, however, we may seek an expression
for this value, based upon very probable assumptions, which will
show how we would naturally proceed to its evaluation, if our powers
of observation were fine enough to take cognizance of individual
molecules.

If the unit of mass of a monatomic gas contains ν atoms, and it
may be treated as a system of 3ν degrees of freedom, which seems
to be the case, we have for canonical distribution

εp = 3
2
νΘ,

dεp
dΘ

= 3
2
ν. (491)

If we write T for temperature, and cv for the specific heat of the gas
for constant volume (or rather the limit toward which this specific
heat tends, as rarefaction is indefinitely increased), we have

dεp
dT

= cv,

since we may regard the energy as entirely kinetic. We may set the
εp of this equation equal to the εp of the preceding, where indeed
the individual values of which the average is taken would appear to
human observation as identical. This gives

dΘ

dT
=

2cv
3ν

,
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whence
1

K
=

2cv
3ν

. (493)

a value recognized by physicists as a constant independent of the
kind of monatomic gas considered.

We may also express the value of K in a somewhat different
form, which corresponds to the indirect method by which physicists
are accustomed to determine the quantity cv. The kinetic energy
due to the motions of the centers of mass of the molecules of a mass
of gas sufficiently expanded is easily shown to be equal to

3
2
pv,

where p and v denote the pressure and volume. The average value
of the same energy in a canonical ensemble of such a mass of gas is

3
2
Θν,

where ν denotes the number of molecules in the gas. Equating these
values, we have

pv = Θν, (494)

whence
1

K
=

Θ

T
=
pv

νT
. (495)

Now the laws of Boyle, Charles, and Avogadro may be expressed
by the equation

pv = AνT, (496)

where A is a constant depending only on the units in which energy
and temperature are measured. 1/K, therefore, might be called the
constant of the law of Boyle, Charles, and Avogadro as expressed
with reference to the true number of molecules in a gaseous body.
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Since such numbers are unknown to us, it is more convenient to
express the law with reference to relative values. If we denote by M
the so-called molecular weight of a gas, that is, a number taken from
a table of numbers proportional to the weights of various molecules
and atoms, but having one of the values, perhaps the atomic weight
of hydrogen, arbitrarily made unity, the law of Boyle, Charles, and
Avogadro may be written in the more practical form

pv = A′T
m

M
, (497)

where A′ is a constant and m the weight of gas considered. It is
evident that 1/K is equal to the product of the constant of the law
in this form and the (true) weight of an atom of hydrogen, or such
other atom or molecule as may be given the value unity in the table
of molecular weights.

In the following chapter we shall consider the necessary modi-
fications in the theory of equilibrium, when the quantity of matter
contained in a system is to be regarded as variable, or, if the system
contains more than one kind of matter, when the quantities of the
several kinds of matter in the system are to be regarded as indepen-
dently variable. This will give us yet another set of variables in the
statistical equation, corresponding to those of the amplified form of
the thermodynamic equation.
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SYSTEMS COMPOSED OF MOLECULES.

The nature of material bodies is such, that especial interest attaches
to the dynamics of systems composed of a great number of entirely
similar particles, or, it may be, of a great number of particles of
several kinds, all of each kind being entirely similar to each other.
We shall therefore proceed to consider systems composed of such
particles, whether in great numbers or otherwise, and especially to
consider the statistical equilibrium of ensembles of such systems.
One of the variations to be considered in regard to such systems is
a variation in the numbers of the particles of the various kinds which
it contains, and the question of statistical equilibrium between two
ensembles of such systems relates in part to the tendencies of the
various kinds of particles to pass from the one to the other.

First of all, we must define precisely what is meant by statis-
tical equilibrium of such an ensemble of systems. The essence of
statistical equilibrium is the permanence of the number of systems
which fall within any given limits with respect to phase. We have
therefore to define how the term “phase” is to be understood in
such cases. If two phases differ only in that certain entirely simi-
lar particles have changed places with one another, are they to be
regarded as identical or different phases? If the particles are re-
garded as indistinguishable, it seems in accordance with the spirit
of the statistical method to regard the phases as identical. In fact,
it might be urged that in such an ensemble of systems as we are
considering no identity is possible between the particles of different
systems except that of qualities, and if ν particles of one system
are described as entirely similar to one another and to ν of another
system, nothing remains on which to base the identification of any
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particular particle of the first system with any particular particle
of the second. And this would be true, if the ensemble of systems
had a simultaneous objective existence. But it hardly applies to
the creations of the imagination. In the cases which we have been
considering, and in those which we shall consider, it is not only
possible to conceive of the motion of an ensemble of similar systems
simply as possible cases of the motion of a single system, but it is
actually in large measure for the sake of representing more clearly
the possible cases of the motion of a single system that we use the
conception of an ensemble of systems. The perfect similarity of
several particles of a system will not in the least interfere with the
identification of a particular particle in one case with a particular
particle in another. The question is one to be decided in accordance
with the requirements of practical convenience in the discussion of
the problems with which we are engaged.

Our present purpose will often require us to use the terms phase,
density-in-phase, statistical equilibrium, and other connected terms
on the supposition that phases are not altered by the exchange of
places between similar particles. Some of the most important ques-
tions with which we are concerned have reference to phases thus
defined. We shall call them phases determined by generic defini-
tions, or briefly, generic phases. But we shall also be obliged to
discuss phases defined by the narrower definition (so that exchange
of position between similar particles is regarded as changing the
phase), which will be called phases determined by specific defini-
tions, or briefly, specific phases. For the analytical description of a
specific phase is more simple than that of a generic phase. And it
is a more simple matter to make a multiple integral extend over all
possible specific phases than to make one extend without repetition
over all possible generic phases.
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It is evident that if ν1, ν2, . . . νh, are the numbers of the dif-
ferent kinds of molecules in any system, the number of specific
phases embraced in one generic phase is represented by the con-
tinued product ν1! ν2! · · · νh! and the coefficient of probability of a
generic phase is the sum of the probability-coefficients of the specific
phases which it represents. When these are equal among themselves,
the probability-coefficient of the generic phase is equal to that of
the specific phase multiplied by ν1! ν2! · · · νh!. It is also evident that
statistical equilibrium may subsist with respect to generic phases
without statistical equilibrium with respect to specific phases, but
not vice versa.

Similar questions arise where one particle is capable of several
equivalent positions. Does the change from one of these positions
to another change the phase? It would be most natural and logi-
cal to make it affect the specific phase, but not the generic. The
number of specific phases contained in a generic phase would then
be ν1!κν1

1 · · · νh!κ
νh
h , where κ1, . . .κh denote the numbers of equiva-

lent positions belonging to the several kinds of particles. The case
in which a κ is infinite would then require especial attention. It
does not appear that the resulting complications in the formulae
would be compensated by any real advantage. The reason of this
is that in problems of real interest equivalent positions of a particle
will always be equally probable. In this respect, equivalent posi-
tions of the same particle are entirely unlike the ν! different ways in
which ν particles may be distributed in ν different positions. Let it
therefore be understood that in spite of the physical equivalence of
different positions of the same particle they are to be considered as
constituting a difference of generic phase as well as of specific. The
number of specific phases contained in a generic phase is therefore
always given by the product ν1! ν2! · · · νh!.
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Instead of considering, as in the preceding chapters, ensembles of
systems differing only in phase, we shall now suppose that the sys-
tems constituting an ensemble are composed of particles of various
kinds, and that they differ not only in phase but also in the num-
bers of these particles which they contain. The external coördinates
of all the systems in the ensemble are supposed, as heretofore, to
have the same value, and when they vary, to vary together. For
distinction, we may call such an ensemble a grand ensemble, and
one in which the systems differ only in phase a petit ensemble. A
grand ensemble is therefore composed of a multitude of petit en-
sembles. The ensembles which we have hitherto discussed are petit
ensembles.

Let ν1, . . . νh, etc., denote the numbers of the different kinds
of particles in a system, ε its energy, and q1, . . . qn, p1, . . . pn its
coördinates and momenta. If the particles are of the nature of ma-
terial points, the number of coördinates (n) of the system will be
equal to 3ν1 + · · ·+ 3νh. But if the particles are less simple in their
nature, if they are to be treated as rigid solids, the orientation of
which must be regarded, or if they consist each of several atoms,
so as to have more than three degrees of freedom, the number of
coördinates of the system will be equal to the sum of ν1, ν2, etc.,
multiplied each by the number of degrees of freedom of the kind of
particle to which it relates.

Let us consider an ensemble in which the number of systems
having ν1, . . . νh particles of the several kinds, and having values
of their coördinates and momenta lying between the limits q1 and
q1 + dq1, p1 and p1 + dp1, etc., is represented by the expression

Ne
Ω+µ1ν1+···+µhνh−ε

Θ

ν1! · · · νh!
dp1 . . . dqn, (498)
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where N , Ω, µ1, . . .µh are constants, N denoting the total number
of systems in the ensemble. The expression

Ne
Ω+µ1ν1+···+µhνh−ε

Θ

ν1! · · · νh!
(499)

evidently represents the density-in-phase of the ensemble within the
limits described, that is, for a phase specifically defined. The ex-
pression

e
Ω+µ1ν1+···+µhνh−ε

Θ

ν1! · · · νh!
dp1 . . . dqn, (500)

is therefore the probability-coefficient for a phase specifically de-
fined. This has evidently the same value for all the ν1! · · · νh! phases
obtained by interchanging the phases of particles of the same kind.
The probability-coefficient for a generic phase will be ν1! · · · νh!
times as great, viz.,

e
Ω+µ1ν1+···+µhνh−ε

Θ . (501)

We shall say that such an ensemble as has been described is
canonically distributed, and shall call the constant Θ its modulus.
It is evidently what we have called a grand ensemble. The petit
ensembles of which it is composed are canonically distributed, ac-
cording to the definitions of Chapter IV, since the expression

e
Ω+µ1ν1+···+µhνh

Θ

ν1! · · · νh!
(502)

is constant for each petit ensemble. The grand ensemble, therefore,
is in statistical equilibrium with respect to specific phases.

If an ensemble, whether grand or petit, is identical so far as
generic phases are concerned with one canonically distributed, we
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shall say that its distribution is canonical with respect to generic
phases. Such an ensemble is evidently in statistical equilibrium with
respect to generic phases, although it may not be so with respect
to specific phases.

If we write H for the index of probability of a generic phase in
a grand ensemble, we have for the case of canonical distribution

H =
Ω + µ1ν1 + · · ·+ µhνh − ε

Θ
. (503)

It will be observed that the H is a linear function of ε and ν1, . . . νh;
also that whenever the index of probability of generic phases in a
grand ensemble is a linear function of ε, ν1, . . . νh, the ensemble is
canonically distributed with respect to generic phases.

The constant Ω we may regard as determined by the equation

N =
∑
ν1

· · ·
∑
νh

∫
all· · ·

phases

∫
Ne

Ω+µ1ν1+···+µhνh−ε
Θ

ν1! · · · νh!
dp1 . . . dqn, (504)

or

e−
Ω
Θ =

∑
ν1

· · ·
∑
νh

e
µ1ν1+···+µhνh

Θ

ν1! · · · νh!

∫
all· · ·

phases

∫
e−

ε
Θ dp1 . . . dqn, (505)

where the multiple sum indicated by
∑

ν1
· · ·
∑

νh
includes all terms

obtained by giving to each of the symbols ν1, . . . νh all integral
values from zero upward, and the multiple integral (which is to be
evaluated separately for each term of the multiple sum) is to be
extended over all the (specific) phases of the system having the
specified numbers of particles of the various kinds. The multiple

integral in the last equation is what we have represented by e−
ψ
Θ .



statistical mechanics 226

See equation(92). We may therefore write

e−
Ω
Θ =

∑
ν1

· · ·
∑
νh

e
µ1ν1+···+µhνh−ψ

Θ

ν1! · · · νh!
. (506)

It should be observed that the summation includes a term in
which all the symbols ν1, . . . νh have the value zero. We must there-
fore recognize in a certain sense a system consisting of no particles,
which, although a barren subject of study in itself, cannot well be
excluded as a particular case of a system of a variable number of
particles. In this case ε is constant, and there are no integrations
to be performed. We have therefore∗

e−
ψ
Θ = e−

ε
Θ , i.e., ψ = ε.

The value of εp is of course zero in this case. But the value of εq
contains an arbitrary constant, which is generally determined by
considerations of convenience, so that εq and ε do not necessarily
vanish with ν1, . . . νh.

Unless −Ω has a finite value, our formulae become illusory. We
have already, in considering petit ensembles canonically distributed,
found it necessary to exclude cases in which −ψ has not a finite
value.† The same exclusion would here make −ψ finite for any
finite values of ν1, . . . νh. This does not necessarily make a multiple
series of the form (506) finite. We may observe, however, that if for
all values of ν1, . . . νh

−ψ ≤ c0 + c1ν1 + · · ·+ chνh, (507)

∗This conclusion may appear a little strained. The original definition of ψ
may not be regarded as fairly applying to systems of no degrees of freedom. We
may therefore prefer to regard these equations as defining ψ in this case.

†See Chapter IV, page 39.
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where c0, c1, . . . ch are constants or functions of Θ,

e−
Ω
Θ ≤

∑
ν1

· · ·
∑
νh

e
c0+(µ1+c1)ν1+···+(µh+ch)νh

Θ

ν1! · · · νh!
,

i.e.

e−
Ω
Θ ≤ e

c0
Θ

∑
ν1

e
µ1+c1

Θ
ν1

ν1!
· · ·
∑
νh

e
µh+ch

Θ
νh

νh!
,

i.e.

e−
Ω
Θ ≤ e

c0
Θ ee

µ1+c1
Θ

ν1 · · · ee
µh+ch

Θ
νh
,

i.e.

−Ω

Θ
≤ c0

Θ
+ e

µ1+c1
Θ

ν1 + · · ·+ e
µh+ch

Θ
νh . (508)

The value of −Ω will therefore be finite, when the condition (507) is
satisfied. If therefore we assume that −Ω is finite, we do not appear
to exclude any cases which are analogous to those of nature.∗

The interest of the ensemble which has been described lies in
the fact that it may be in statistical equilibrium, both in respect
to exchange of energy and exchange of particles, with other grand
ensembles canonically distributed and having the same values of Θ

∗If the external coördinates determine a certain volume within which the
system is confined, the contrary of (507) would imply that we could obtain an
infinite amount of work by crowding an infinite quantity of matter into a finite
volume.
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and of the coefficients µ1, µ2, etc., when the circumstances are such
that exchange of energy and of particles are possible, and when
equilibrium would not subsist, were it not for equal values of these
constants in the two ensembles.

With respect to the exchange of energy, the case is exactly the
same as that of the petit ensembles considered in Chapter IV, and
needs no especial discussion. The question of exchange of particles
is to a certain extent analogous, and may be treated in a somewhat
similar manner. Let us suppose that we have two grand ensem-
bles canonically distributed with respect to specific phases, with the
same value of the modulus and of the coefficients µ1, . . .µh, and let
us consider the ensemble of all the systems obtained by combining
each system of the first ensemble with each of the second.

The probability-coefficient of a generic phase in the first ensem-
ble may be expressed by

e
Ω′+µ1ν′1+···+µhν′h−ε

′

Θ . (509)

The probability-coefficient of a specific phase will then be expressed
by

e
Ω′+µ1ν′1+···+µhν′h−ε

′

Θ

ν ′1! · · · ν ′h!
, (510)

since each generic phase comprises ν1! · · · νh! specific phases. In
the second ensemble the probability-coefficients of the generic and
specific phases will be

e
Ω′′+µ1ν′′1 +···+µhν′′h−ε

′′

Θ , (511)

and

e
Ω′′+µ1ν′′1 +···+µhν′′h−ε

′′

Θ

ν ′′1 ! · · · ν ′′h!
. (512)
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The probability-coefficient of a generic phase in the third ensem-
ble, which consists of systems obtained by regarding each system
of the first ensemble combined with each of the second as form-
ing a system, will be the product of the probability-coefficients of
the generic phases of the systems combined, and will therefore be
represented by the formula

e
Ω′′′+µ1ν′′′1 +···+µhν′′′h −ε

′′′

Θ (513)

where Ω′′′ = Ω′ + Ω′′, ε′′′ = ε′ + ε′′, ν ′′′1 = ν ′1 + ν ′′1 , etc. It will
be observed that ν ′′′1 , etc., represent the numbers of particles of
the various kinds in the third ensemble, and ε′′′ its energy; also
that Ω′′′ is a constant. The third ensemble is therefore canonically
distributed with respect to generic phases.

If all the systems in the same generic phase in the third ensemble
were equably distributed among the ν ′′′1 ! · · · ν ′′′h ! specific phases which
are comprised in the generic phase, the probability-coefficient of a
specific phase would be

e
Ω′′′+µ1ν′′′1 +···+µhν′′′h −ε

′′′

Θ

ν ′′′1 ! · · · ν ′′′h !
. (514)

In fact, however, the probability-coefficient of any specific phase
which occurs in the third ensemble is

e
Ω′′′+µ1ν′′′1 +···+µhν′′′h −ε

′′′

Θ

ν ′1! · · · ν ′h! ν ′′1 ! · · · ν ′′h!
, (515)

which we get by multiplying the probability-coefficients of specific
phases in the first and second ensembles. The difference between the
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formulae (514) and (515) is due to the fact that the generic phases
to which (513) relates include not only the specific phases occurring
in the third ensemble and having the probability-coefficient (515),
but also all the specifier phases obtained from these by interchange
of similar particles between two combined systems. Of these the
probability-coefficient is evidently zero, as they do not occur in the
ensemble.

Now this third ensemble is in statistical equilibrium, with respect
both to specific and generic phases, since the ensembles from which
it is formed are so. This statistical equilibrium is not dependent
on the equality of the modulus and the coefficients µ1, . . .µh in the
first and second ensembles. It depends only on the fact that the two
original ensembles were separately in statistical equilibrium, and
that there is no interaction between them, the combining of the two
ensembles to form a third being purely nominal, and involving no
physical connection. This independence of the systems, determined
physically by forces which prevent particles from passing from one
system to the other, or coming within range of each other’s action,
is represented mathematically by infinite values of the energy for
particles in a space dividing the systems. Such a space may be
called a diaphragm.

If we now suppose that, when we combine the systems of the
two original ensembles, the forces are so modified that the energy
is no longer infinite for particles in all the space forming the di-
aphragm, but is diminished in a part of this space, so that it is
possible for particles to pass from one system to the other, this will
involve a change in the function ε′′′ which represents the energy of
the combined systems, and the equation ε′′′ = ε′ + ε′′ will no longer
hold. Now if the coefficient of probability in the third ensemble were
represented by (513) with this new function ε′′′, we should have sta-
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tistical equilibrium, with respect to generic phases, although not to
specific. But this need involve only a trifling change in the distri-
bution of the third ensemble,∗ a change represented by the addition
of comparatively few systems in which the transference of particles
is taking place to the immense number obtained by combining the
two original ensembles. The difference between the ensemble which
would be in statistical equilibrium, and that obtained by combining
the two original ensembles may be diminished without limit, while
it is still possible for particles to pass from one system to another.
In this sense we may say that the ensemble formed by combining the
two given ensembles may still be regarded as in a state of (approx-
imate) statistical equilibrium with respect to generic phases, when
it has been made possible for particles to pass between the sys-
tems combined, and when statistical equilibrium for specific phases
has therefore entirely ceased to exist, and when the equilibrium
for generic phases would also have entirely ceased to exist, if the
given ensembles had not been canonically distributed, with respect
to generic phases, with the same values of Θ and µ1, . . .µh.

It is evident also that considerations of this kind will apply sepa-
rately to the several kinds of particles. We may diminish the energy
in the space forming the diaphragm for one kind of particle and not
for another. This is the mathematical expression for a “semiper-
meable” diaphragm. The condition necessary for statistical equilib-
rium where the diaphragm is permeable only to particles to which
the suffix ( )1 relates will be fulfilled when µ1 and Θ have the same

∗It will be observed that, so far as the distribution is concerned, very large
and infinite values of ε (for certain phases) amount to nearly the same thing,—
one representing the total and the other the nearly total exclusion of the phases
in question. An infinite change, therefore, in the value of ε (for certain phases)
may represent a vanishing change in the distribution.
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values in the two ensembles, although the other coefficients µ2, etc.,
may be different.

This important property of grand ensembles with canonical dis-
tribution will supply the motive for a more particular examination
of the nature of such ensembles, and especially of the comparative
numbers of systems in the several petit ensembles which make up a
grand ensemble, and of the average values in the grand ensemble of
some of the most important quantities, and of the average squares
of the deviations from these average values.

The probability that a system taken at random from a grand
ensemble canonically distributed will have exactly ν1, . . . νh particles
of the various kinds is expressed by the multiple integral∫

all· · ·
phases

∫
e

Ω+µ1ν1+···+µhνh−ε
Θ

ν1! · · · νh!
dp1 . . . dqn, (516)

or

e
Ω+µ1ν1+···+µhνh−ψ

Θ

ν1! · · · νh!
(517)

This may be called the probability of the petit ensemble (ν1, . . . νh).
The sum of all such probabilities is evidently unity. That is,

∑
ν1

· · ·
∑
νh

e
Ω+µ1ν1+···+µhνh−ψ

Θ

ν1! · · · νh!
= 1, (518)

which agrees with (506).
The average value in the grand ensemble of any quantity u, is

given by the formula

u =
∑
ν1

· · ·
∑
νh

∫
all· · ·

phases

∫
u e

Ω+µ1ν1+···+µhνh−ε
Θ

ν1! · · · νh!
dp1 . . . dqn. (519)
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If u is a function of ν1, . . . νh alone, i.e., if it has the same value in
all systems of any same petit ensemble, the formula reduces to

u =
∑
ν1

· · ·
∑
νh

u e
Ω+µ1ν1+···+µhνh−ψ

Θ

ν1! · · · νh!
. (520)

Again, if we write u |grand and u |petit to distinguish averages in the
grand and petit ensembles, we shall have

u |grand =
∑
ν1

· · ·
∑
νh

u |petit

e
Ω+µ1ν1+···+µhνh−ψ

Θ

ν1! · · · νh!
. (521)

In this chapter, in which we are treating of grand ensembles,
u will always denote the average for a grand ensemble. In the
preceding chapters, u has always denoted the average for a petit
ensemble.

Equation (505), which we repeat in a slightly different form, viz.,

e−
Ω
Θ =

∑
ν1

· · ·
∑
νh

∫
all· · ·

phases

∫
e
µ1ν1+···+µhνh−ε

Θ

ν1! · · · νh!
dp1 . . . dqn, (522)

shows that Ω is a function of Θ and µ1, . . .µh; also of the external
coördinates a1, a2, etc., which are involved implicitly in ε. If we
differentiate the equation regarding all these quantities as variable,
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we have

e−
Ω
Θ

(
−dΩ

Θ
+

Ω

Θ2
dΘ

)
= −dΘ

Θ

∑
ν1

· · ·
∑
νh

∫
all· · ·

phases

∫
(µ1ν1 + · · ·+ µhνh − ε) e

µ1ν1+···+µhνh−ε
Θ

ν1! · · · νh!
dp1 . . . dqn

+
dµ1

Θ

∑
ν1

· · ·
∑
νh

∫
all· · ·

phases

∫
ν1 e

µ1ν1+···+µhνh−ε
Θ

ν1! · · · νh!
dp1 . . . dqn

+ etc.

− da1

Θ

∑
ν1

· · ·
∑
νh

∫
all· · ·

phases

∫
dε

da1

e
µ1ν1+···+µhνh−ε

Θ

ν1! · · · νh!
dp1 . . . dqn

− etc. (523)

If we multiply this equation by e
Ω
Θ , and set as usual A1, A2, etc.,

for −dε/da1, −dε/da2, etc., we get in virtue of the law expressed by
equation (519),

−dΩ

Θ
+

Ω

Θ2
= −dΘ

Θ2
(µ1ν1 + · · ·µhνh − ε)

+
dµ1

Θ
ν1 +

dµ2

Θ
ν2 + etc.

+
da1

Θ
A1 +

da2

Θ
A2 + etc.; (524)
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that is,

dΩ =
Ω + µ1ν1 + · · ·+ µhνh − ε

Θ
dΘ−

∑
ν1 dµ1 −

∑
A1 da1.

(525)
Since equation (503) gives

Ω + µ1ν1 + · · ·+ µhνh − ε
Θ

= H, (526)

the preceding equation may be written

dΩ = H dΘ−
∑

ν1 dµ1 −
∑

A1 da1. (527)

Again, equation (526) gives

dΩ +
∑

µ1 dν1 +
∑

ν1 dµ1 − dε = Θ dH + H dΘ. (528)

Eliminating dΩ from these equations, we get

dε = −Θ dH +
∑

µ1 dν1 −
∑

A1 da1. (529)

If we set

Ψ = ε+ ΘH, (530)

dΨ = dε+ Θ dH + H dΘ, (531)

we have
dΨ = H dΘ +

∑
µ1 dν1 −

∑
A1 da1. (532)

The corresponding thermodynamic equations are

dε = T dη +
∑

µ1 dm1 −
∑

A1 da1, (533)

ψ = ε− Tη, (534)

dψ = −η dT +
∑

µ1 dm1 −
∑

A1 da1. (535)
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These are derived from the thermodynamic equations (114) and
(117) by the addition of the terms necessary to take account of
variation in the quantities (m1, m2, etc.) of the several substances
of which a body is composed. The correspondence of the equations
is most perfect when the component substances are measured in
such units that m1, m2, etc., are proportional to the numbers of the
different kinds of molecules or atoms. The quantities µ1, µ2, etc.,
in these thermodynamic equations may be defined as differential
coefficients by either of the equations in which they occur.∗

If we compare the statistical equations (529) and (532) with
(114) and (112), which are given in Chapter IV, and discussed in
Chapter XIV, as analogues of thermodynamic equations, we find
considerable difference. Beside the terms corresponding to the ad-
ditional terms in the thermodynamic equations of this chapter, and
beside the fact that the averages are taken in a grand ensemble in
one case and in a petit in the other, the analogues of entropy, H
and η, are quite different in definition and value. We shall return to
this point after we have determined the order of magnitude of the
usual anomalies of ν1, . . . νh.

If we differentiate equation (518) with respect to µ1, and multi-
ply by Θ, we get

∑
ν1

· · ·
∑
νh

(
dΩ

dµ1

+ ν1

)
e

Ω+µ1ν1+···+µhνh−ψ
Θ

ν1! · · · νh!
= 0, (536)

whence dΩ/dµ1 = −ν1, which agrees with (527). Differentiating
again with respect to µ1 and to µ2, and setting

dΩ

dµ1

= −ν1,
dΩ

dµ2

= −ν2,

∗Compare Transactions Connecticut Academy, Vol. III, pages 136 ff.
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we get

∑
ν1

· · ·
∑
νh

(
d2Ω

dµ2
1

+
(ν1 − ν1)2

Θ

)
e

Ω+µ1ν1+···+µhνh−ψ
Θ

ν1! · · · νh!
= 0, (537)

∑
ν1

· · ·
∑
νh

(
d2Ω

dµ1 dµ2

+
(ν1 − ν1)(ν2 − ν2)

Θ

)
e

Ω+µ1ν1+···+µhνh−ψ
Θ

ν1! · · · νh!
= 0.

(538)

The first members of these equations represent the average values
of the quantities in the principal parentheses. We have therefore

(ν1 − ν1)2 = ν2
1 − ν2

1 = −Θ
d2Ω

dµ2
1

= Θ
dν1

dµ1

, (539)

(ν1 − ν1)(ν2 − ν2) = ν1ν2 − ν1ν2 = −Θ
d2Ω

dµ1 dµ2

= Θ
dν1

dµ2

= Θ
dν2

dµ1

.

(540)

From equation (539) we may get an idea of the order of magni-
tude of the divergences of ν1 from its average value in the ensemble,
when that average value is great. The equation may be written

(ν1 − ν1)2

ν2
1

=
Θ

ν2
1

dν1

dµ1

, (541)

The second member of this equation will in general be small when
ν1 is great. Large values are not necessarily excluded, but they must
be confined within very small limits with respect to µ. For if

(ν1 − ν1)2

ν2
1

>
1

ν
1
2
1

, (542)
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for all values of µ1 between the limits µ′1 and µ′′1, we shall have
between the same limits

Θ

ν
3
2
1

dν1 > dµ1, (543)

and therefore

1
2
Θ

(
1

ν
′ 1
2

1

− 1

ν
′′ 1

2
1

)
> µ′′1 − µ′1. (544)

The difference µ′′1−µ′1 is therefore numerically a very small quantity.
To form an idea of the importance of such a difference, we should
observe that in formula (498) µ1 is multiplied by ν1 and the product
subtracted from the energy. A very small difference in the value
of µ1 may therefore be important. But since νΘ is always less
than the kinetic energy of the system, our formula shows that µ′′1 −
µ′1, even when multiplied by ν ′1 or ν ′′1, may still be regarded as an
insensible quantity.

We can now perceive the leading characteristics with respect to
properties sensible to human faculties of such an ensemble as we are
considering (a grand ensemble canonically distributed), when the
average numbers of particles of the various kinds are of the same
order of magnitude as the number of molecules in the bodies which
are the subject of physical experiment. Although the ensemble con-
tains systems having the widest possible variations in respect to the
numbers of the particles which they contain, these variations are
practically contained within such narrow limits as to be insensible,
except for particular values of the constants of the ensemble. This
exception corresponds precisely to the case of nature, when certain
thermodynamic quantities corresponding to Θ, µ1, µ2, etc., which
in general determine the separate densities of various components
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of a body, have certain values which make these densities indeter-
minate, in other words, when the conditions are such as determine
coexistent phases of matter. Except in the case of these particular
values, the grand ensemble would not differ to human faculties of
perception from a petit ensemble, viz., any one of the petit ensem-
bles which it contains in which ν1, ν2, etc., do not sensibly differ
from their average values.

Let us now compare the quantities H and η, the average values
of which (in a grand and a petit ensemble respectively) we have seen
to correspond to entropy. Since

H =
Ω + µ1ν1 + · · ·+ µhνh − ε

Θ
,

and

η =
ψ − ε

Θ
,

H− η =
Ω + µ1ν1 + · · ·+ µhνh − ψ

Θ
. (545)

A part of this difference is due to the fact that H relates to generic
phases and η to specific. If we write ηgen for the index of probability
for generic phases in a petit ensemble, we have

ηgen = η + log ν1! · · · νh!, (546)

H− η = H− ηgen + log ν1! · · · νh!, (547)

H− ηgen =
Ω + µ1ν1 + · · ·+ µhνh − ψ

Θ
− log ν1! · · · νh!. (548)

This is the logarithm of the probability of the petit ensemble
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(ν1, . . . νh).
∗ If we set

ψgen − ε
Θ

= ηgen, (549)

which corresponds to the equation

ψ − ε
Θ

= η, (550)

we have
ψgen = ψ + Θ log ν1! · · · νh!,

and

H− ηgen =
Ω + µ1ν1 + · · ·+ µhνh − ψgen

Θ
. (551)

This will have a maximum when†

dψgen

dν1

= µ1,
dψgen

dν2

= µ2, etc. (552)

Distinguishing values corresponding to this maximum by ac-
cents, we have approximately, when ν1, . . . νh are of the same order
of magnitude as the numbers of molecules in ordinary bodies,

H− ηgen =
Ω + µ1ν1 + · · ·+ µhνh − ψgen

Θ

=
Ω + µ1ν

′
1 + · · ·+ µhν

′
h − ψ′gen

Θ

−
(
d2ψgen

dν2
1

)′
(∆ν1)2

2Θ
−
(
d2ψgen

dν1 dν2

)′
∆ν1 ∆ν2

Θ
−· · ·−

(
d2ψgen

dν2
h

)′
(∆νh)

2

2Θ
,

(553)

∗See formula (517).
†Strictly speaking, ψgen is not determined as function of ν1, . . . νh, except

for integral values of these variables. Yet we may suppose it to be determined
as a continuous function by any suitable process of interpolation.
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eH−ηgen = eCe
−
(
d2ψgen

dν2
1

)′
(∆ν1)2

2Θ
−
(
d2ψgen

dν1 dν2

)′
∆ν1 ∆ν2

Θ
−···−

(
d2ψgen

dν2
h

)′
(∆νh)2

2Θ ,
(554)

where

C =
Ω + µ1ν

′
1 + · · ·+ µhν

′
h − ψ′gen

Θ
, (555)

and
∆ν1 = ν1 − ν ′1, ∆ν2 = ν2 − ν ′2, etc. (556)

This is the probability of the system (ν1, . . . νh). The probability
that the values of ν1, . . . νh lie within given limits is given by the
multiple integral

∫
· · ·
∫
eCe

−
(
d2ψgen

dν2
1

)′
(∆ν1)2

2Θ −
(
d2ψgen

dν1 dν2

)′
∆ν1 ∆ν2

Θ ···−
(
d2ψgen

dν2
h

)′
(∆νh)2

2Θ
dν1 . . . dνh.

(557)

This shows that the distribution of the grand ensemble with
respect to the values of ν1, . . . νh follows the “law of errors” when
ν ′1, . . . ν ′h are very great. The value of this integral for the limits ±∞
should be unity. This gives

eC
(2πΘ)

h
2

D
1
2

= 1, (558)

or

C = 1
2

logD − h

2
log(2πΘ), (559)



statistical mechanics 242

where

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
d2ψgen

dν2
1

)′ (
d2ψgen

dν1 dν2

)′
· · ·

(
d2ψgen

dν1 dνh

)′
(
d2ψgen

dν2 dν1

)′ (
d2ψgen

dν2
2

)′
· · ·

(
d2ψgen

dν2 dνh

)′
· · · · · · · · · · · ·(

d2ψgen

dνh dν1

)′ (
d2ψgen

dνh dν2

)′
· · ·

(
d2ψgen

dν2
h

)′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
; (560)

that is,

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
dµ1

dν1

)′ (
dµ1

dν2

)′
· · ·

(
dµ1

dνh

)′
(
dµ2

dν1

)′ (
dµ2

dν2

)′
· · ·

(
dµ2

dνh

)′
· · · · · · · · · · · ·(
dµh
dν1

)′ (
dµh
dν2

)′
· · ·

(
dµh
dνh

)′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (561)

Now, by (553), we have for the first approximation

H− ηgen = C − 1
2

logD − h

2
log(2πΘ), (562)

and if we divide by the constant K,∗ to reduce these quantities to
the usual unit of entropy,

H− ηgen

K
=

logD − h log(2πΘ)

2K
. (563)

This is evidently a negligible quantity, since K is of the same order
of magnitude as the number of molecules in ordinary bodies. It is

∗See pages 216–219.
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to be observed that ηgen is here the average in the grand ensem-

ble, whereas the quantity which we wish to compare with H is the
average in a petit ensemble. But as we have seen that in the case
considered the grand ensemble would appear to human observation
as a petit ensemble, this distinction may be neglected.

The differences therefore, in the case considered, between the
quantities which may be represented by the notations∗

Hgen |grand , ηgen |grand , ηgen |petit

are not sensible to human faculties. The difference

ηgen |petit − ηspec |petit = ν1! · · · νh!,

and is therefore constant, so long as the numbers ν1, . . . νh are con-
stant. For constant values of these numbers, therefore, it is immate-
rial whether we use the average of ηgen or of η for entropy, since this
only affects the arbitrary constant of integration which is added to
entropy. But when the numbers ν1, . . . νh are varied, it is no longer
possible to use the index for specific phases. For the principle that
the entropy of any body has an arbitrary additive constant is sub-
ject to limitation, when different quantities of the same substance
are concerned. In this case, the constant being determined for one
quantity of a substance, is thereby determined for all quantities of
the same substance.

To fix our ideas, let us suppose that we have two identical fluid
masses in contiguous chambers. The entropy of the whole is equal
to the sum of the entropies of the parts, and double that of one

∗In this paragraph, for greater distinctness, Hgen |grand and ηspec |petit have

been written for the quantities which elsewhere are denoted by H and η.
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part. Suppose a valve is now opened, making a communication be-
tween the chambers. We do not regard this as making any change
in the entropy, although the masses of gas or liquid diffuse into one
another, and although the same process of diffusion would increase
the entropy, if the masses of fluid were different. It is evident, there-
fore, that it is equilibrium with respect to generic phases, and not
with respect to specific, with which we have to do in the evaluation
of entropy, and therefore, that we must use the average of H or
of ηgen, and not that of η, as the equivalent of entropy, except in
the thermodynamics of bodies in which the number of molecules of
the various kinds is constant.
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