diff --git a/books/bookvol7.1.pamphlet b/books/bookvol7.1.pamphlet index c022143..a595b42 100644 --- a/books/bookvol7.1.pamphlet +++ b/books/bookvol7.1.pamphlet @@ -2579,6 +2579,7 @@ answer for \texht{$12^2$}{12**2}. \pagehead{BinaryExpansionXmpPage}{binary.ht}{BinaryExpansion} \pagepic{ps/v71binaryexpansionxmppage.eps}{BinaryExpansionXmpPage} \pagefrom{Axiom Number Types}{NumberPage} +\pagefrom{Integer}{IntegerXmpPage} \pageto{DecimalExpansion}{DecimalExpansionXmpPage} \pageto{RadixExpansion}{RadixExpansionXmpPage} \pageto{HexadecimalExpansion}{HexExpansionXmpPage} @@ -4001,8 +4002,9 @@ for t in 1..4]) \bound{lhs}\free{g gam m n r s}} \pagehead{ComplexXmpPage}{complex.ht}{Complex} \pagepic{ps/v71complexxmppage.eps}{ComplexXmpPage} \pagefrom{Axiom Number Types}{NumberPage} +\pagefrom{Primes and Factorization}{ugxIntegerPrimesPage} \pageto{Numeric Functions}{ugProblemNumericPage} -\pageto{notitle}{ugTypesConvertPage} +\pageto{Conversion}{ugTypesConvertPage} <>= \begin{page}{ComplexXmpPage}{Complex} \beginscroll @@ -5117,6 +5119,7 @@ u=0..\%pi,v=0..2*\%pi)} \pagehead{DecimalExpansionXmpPage}{decimal.ht}{Decimal Expansion} \pagepic{ps/v71decimalexpansionxmppage.eps}{DecimalExpansionXmpPage} \pagefrom{Axiom Number Types}{NumberPage} +\pagefrom{Integer}{IntegerXmpPage} \pageto{BinaryExpansion}{BinaryExpansionXmpPage} \pageto{HexadecimalExpansion}{HexExpansionXmpPage} \pageto{RadixExpansion}{RadixExpansionXmpPage} @@ -7839,11 +7842,16 @@ with the given extension, and the same defaults are used. @ \section{fr.ht} \pagehead{FactoredXmpPage}{fr.ht}{Factored} -\pageto{notitle}{ugxFactoredDecompPage} -\pageto{notitle}{ugxFactoredExpandPage} -\pageto{notitle}{ugxFactoredArithPage} -\pageto{notitle}{ugxFactoredNewPage} -\pageto{notitle}{ugxFactoredVarPage} +\pagepic{ps/v71factoredxmppage.eps}{FactoredXmpPage} +\pagefrom{Primes and Factorization}{ugxIntegerPrimesPage} +\pagefrom{Computation of Galois Groups}{ugProblemGaloisPage} +\pagefrom{FactoredFunctions2}{FactoredFnsTwoXmpPage} +\pagefrom{Some Examples of Domains and Packages}{ExamplesExposedPage} +\pageto{Decomposing Factored Objects}{ugxFactoredDecompPage} +\pageto{Expanding Factored Objects}{ugxFactoredExpandPage} +\pageto{Arithmetic with Factored Objects}{ugxFactoredArithPage} +\pageto{Creating New Factored Objects}{ugxFactoredNewPage} +\pageto{Factored Objects with Variables}{ugxFactoredVarPage} <>= \begin{page}{FactoredXmpPage}{Factored} \beginscroll @@ -7886,6 +7894,8 @@ multiplication order. @ \pagehead{ugxFactoredDecompPage}{fr.ht}{Decomposing Factored Objects} +\pagepic{ps/v71ugxfactoreddecomppage.eps}{ugxFactoredDecompPage} +\pagefrom{Factored}{FactoredXmpPage} <>= \begin{page}{ugxFactoredDecompPage}{Decomposing Factored Objects} \beginscroll @@ -7946,6 +7956,8 @@ Neither of these operations returns the unit. @ \pagehead{ugxFactoredExpandPage}{fr.ht}{Expanding Factored Objects} +\pagepic{ps/v71ugxfactoredexpandpage.eps}{ugxFactoredExpandPage} +\pagefrom{Factored}{FactoredXmpPage} <>= \begin{page}{ugxFactoredExpandPage}{Expanding Factored Objects} \beginscroll @@ -7975,6 +7987,8 @@ but with multiplicity one, you could do it this way. @ \pagehead{ugxFactoredArithPage}{fr.ht}{Arithmetic with Factored Objects} +\pagepic{ps/v71ugxfactoredarithpage.eps}{ugxFactoredArithPage} +\pagefrom{Factored}{FactoredXmpPage} <>= \begin{page}{ugxFactoredArithPage}{Arithmetic with Factored Objects} \beginscroll @@ -8056,7 +8070,9 @@ package calling @ \pagehead{ugxFactoredNewPage}{fr.ht}{Creating New Factored Objects} -\pageto{notitle}{FactoredFnsTwoXmpPage} +\pagepic{ps/v71ugxfactorednewpage.eps}{ugxFactoredNewPage} +\pagefrom{Factored}{FactoredXmpPage} +\pageto{FactoredFunctions2}{FactoredFnsTwoXmpPage} <>= \begin{page}{ugxFactoredNewPage}{Creating New Factored Objects} \beginscroll @@ -8115,6 +8131,8 @@ returned by \spadfunFrom{factorList}{Factored}. @ \pagehead{ugxFactoredVarPage}{fr.ht}{Factored Objects with Variables} +\pagepic{ps/v71ugxfactoredvarpage.eps}{ugxFactoredVarPage} +\pagefrom{Factored}{FactoredXmpPage} <>= \begin{page}{ugxFactoredVarPage}{Factored Objects with Variables} \beginscroll @@ -8151,8 +8169,10 @@ You can differentiate with respect to a variable. @ \section{fr2.ht} \pagehead{FactoredFnsTwoXmpPage}{fr2.ht}{FactoredFunctions2} -\pageto{notitle}{FactoredXmpPage} -\pageto{notitle}{ugProblemGaloisPage} +\pagepic{ps/v71factoredfnstwoxmppage.eps}{FactoredFnsTwoXmpPage} +\pagefrom{Creating New Factored Objects}{ugxFactoredNewPage} +\pageto{Factored}{FactoredXmpPage} +\pageto{Computation of Galois Groups}{ugProblemGaloisPage} <>= \begin{page}{FactoredFnsTwoXmpPage}{FactoredFunctions2} \beginscroll @@ -11022,6 +11042,7 @@ Apply \spadfun{heapsort} to present elements in order. \pagehead{HexExpansionXmpPage}{hexadec.ht}{HexadecimalExpansion} \pagepic{ps/v71hexexpansionxmppage.eps}{HexExpansionXmpPage} \pagefrom{Axiom Number Types}{NumberPage} +\pagefrom{Integer}{IntegerXmpPage} \pageto{DecimalExpansion}{DecimalExpansionXmpPage} \pageto{BinaryExpansion}{BinaryExpansionXmpPage} \pageto{RadixExpansion}{RadixExpansionXmpPage} @@ -11085,7 +11106,6 @@ These numbers are bona fide algebraic objects. \pagehead{IntegerXmpPage}{int.ht}{Integer} \pagepic{ps/v71integerxmppage.eps}{IntegerXmpPage} \pagefrom{Integers}{IntegerPage} -\pagefrom{Fraction}{FractionXmpPage} \pageto{Numbers}{ugIntroNumbersPage} \pageto{IntegerNumberTheoryFunctions}{IntNumberTheoryFnsXmpPage} \pageto{DecimalExpansion}{DecimalExpansionXmpPage} @@ -11131,9 +11151,11 @@ and @ \pagehead{ugxIntegerBasicPage}{int.ht}{Basic Functions} -\pageto{notitle}{FractionXmpPage} -\pageto{notitle}{ugTypesUnionsPage} -\pageto{notitle}{ugTypesRecordsPage} +\pagepic{ps/v71ugxintegerbasicpage.eps}{ugxIntegerBasicPage} +\pagefrom{Integer}{IntegerXmpPage} +\pageto{Fraction}{FractionXmpPage} +\pageto{Unions}{ugTypesUnionsPage} +\pageto{Records}{ugTypesRecordsPage} <>= \begin{page}{ugxIntegerBasicPage}{Basic Functions} \beginscroll @@ -11333,6 +11355,7 @@ Records are discussed in detail in \pagehead{ugxIntegerPrimesPage}{int.ht}{Primes and Factorization} \pagepic{ps/v71ugxintegerprimespage.eps}{ugxIntegerPrimesPage} \pagefrom{Integers}{IntegerPage} +\pagefrom{Integer}{IntegerXmpPage} \pageto{Factored}{FactoredXmpPage} \pageto{Complex}{ComplexXmpPage} <>= @@ -11393,6 +11416,9 @@ See \downlink{`Complex'}{ComplexXmpPage}\ignore{Complex} for more details. @ \pagehead{ugxIntegerNTPage}{int.ht}{Some Number Theoretic Functions} +\pagepic{ps/v71ugxintegerntpage.eps}{ugxIntegerNTPage} +\pagefrom{Integer}{IntegerXmpPage} +\pageto{IntegerNumberTheoryFunctions}{IntNumberTheoryFnsXmpPage} <>= \begin{page}{ugxIntegerNTPage}{Some Number Theoretic Functions} \beginscroll @@ -11478,6 +11504,8 @@ Roman numerals. {IntegerNumberTheoryFunctions} \pagepic{ps/v71intnumbertheoryfnsxmppage.eps}{IntNumberTheoryFnsXmpPage} \pagefrom{Integers}{IntegerPage} +\pagefrom{Integer}{IntegerXmpPage} +\pagefrom{Some Number Theoretic Functions}{ugxIntegerNTPage} <>= \begin{page}{IntNumberTheoryFnsXmpPage} {IntegerNumberTheoryFunctions} @@ -16481,7 +16509,7 @@ command: \pagehead{IntegerPage}{numbers.ht}{Integers} \pagepic{ps/v71integerpage.eps}{IntegerPage} \pagefrom{Axiom Number Types}{NumberPage} -\pageto{General Info}{IntegerXmpPage} +\pageto{Integer}{IntegerXmpPage} \pageto{Factorization}{ugxIntegerPrimesPage} \pageto{Functions}{IntNumberTheoryFnsXmpPage} \pageto{Examples}{IntegerExamplePage} @@ -16506,7 +16534,7 @@ will factor more rapidly than numbers with large prime factors. Additional Topics \beginmenu -\menulink{General Info}{IntegerXmpPage} \tab{16} +\menulink{Integer}{IntegerXmpPage} \tab{16} General information and examples of integers. \menulink{Factorization}{ugxIntegerPrimesPage} \tab{16} @@ -18114,6 +18142,7 @@ The norm is the quaternion times its conjugate. \pagehead{RadixExpansionXmpPage}{radix.ht}{RadixExpansion} \pagepic{ps/v71radixexpansionxmppage.eps}{RadixExpansionXmpPage} \pagefrom{Axiom Number Types}{NumberPage} +\pagefrom{Integer}{IntegerXmpPage} \pageto{HexadecimalExpansion}{HexExpansionXmpPage} \pageto{DecimalExpansion}{DecimalExpansionXmpPage} \pageto{BinaryExpansion}{BinaryExpansionXmpPage} @@ -23169,23 +23198,23 @@ of exported functions, an encoded signature and numerical index. @ \chapter{Users Guide Chapter 1 (ug01.ht)} \pagehead{ugIntroPage}{ug01.ht}{An Overview of Axiom} -\pageto{notitle}{ugIntroTypoPage} -\pageto{notitle}{ugIntroStartPage} -\pageto{notitle}{ugIntroTypoPage} -\pageto{notitle}{ugIntroExpressionsPage} -\pageto{notitle}{ugIntroGraphicsPage} -\pageto{notitle}{ugIntroNumbersPage} -\pageto{notitle}{ugIntroCollectPage} -\pageto{notitle}{ugIntroTwoDimPage} -\pageto{notitle}{ugIntroYouPage} -\pageto{notitle}{ugIntroVariablesPage} -\pageto{notitle}{ugIntroCalcLimitsPage} -\pageto{notitle}{ugIntroSeriesPage} -\pageto{notitle}{ugIntroCalcDerivPage} -\pageto{notitle}{ugIntroIntegratePage} -\pageto{notitle}{ugIntroDiffEqnsPage} -\pageto{notitle}{ugIntroSolutionPage} -\pageto{notitle}{ugIntroSysCmmandsPage} +\pagefrom{Numeric Functions}{ugProblemNumericPage} +\pageto{Starting Up and Winding Down}{ugIntroStartPage} +\pageto{Typographic Conventions}{ugIntroTypoPage} +\pageto{The Axiom Language}{ugIntroExpressionsPage} +\pageto{Graphics}{ugIntroGraphicsPage} +\pageto{Numbers}{ugIntroNumbersPage} +\pageto{Data Structures}{ugIntroCollectPage} +\pageto{Expanding to Higher Dimensions}{ugIntroTwoDimPage} +\pageto{Writing Your Own Functions}{ugIntroYouPage} +\pageto{Polynomials}{ugIntroVariablesPage} +\pageto{Limits}{ugIntroCalcLimitsPage} +\pageto{Series}{ugIntroSeriesPage} +\pageto{Derivatives}{ugIntroCalcDerivPage} +\pageto{Integration}{ugIntroIntegratePage} +\pageto{Differential Equations}{ugIntroDiffEqnsPage} +\pageto{Solution of Equations}{ugIntroSolutionPage} +\pageto{System Commands}{ugIntroSysCmmandsPage} <>= \begin{page}{ugIntroPage}{1. An Overview of Axiom} @@ -23307,6 +23336,8 @@ want to leave Axiom. @ \pagehead{ugAvailCLEFPage}{ug01.ht}{Clef} +\pagepic{ps/v71ugavailclefpage.eps}{ugAvailCLEFPage} +\pagefrom{Computation of Galois Groups}{ugProblemGaloisPage} <>= \begin{page}{ugAvailCLEFPage}{1.1.1. \Clef{}} \beginscroll @@ -23952,14 +23983,15 @@ using Axiom's graphics facilities. @ \pagehead{ugIntroNumbersPage}{ug01.ht}{Numbers} -\pageto{notitle}{FloatXmpPage} -\pageto{notitle}{DoubleFloatXmpPage} -\pageto{notitle}{ComplexXmpPage} -\pageto{notitle}{DecimalExpansionXmpPage} -\pageto{notitle}{ContinuedFractionXmpPage} -\pageto{notitle}{PartialFractionXmpPage} -\pageto{notitle}{RadixExpansionXmpPage} -\pageto{notitle}{ugxProblemFinitePrimePage} +\pagepic{ps/v71ugintronumberspage.eps}{ugIntroNumbersPage} +\pagefrom{Integer}{IntegerXmpPage} +\pageto{Float}{FloatXmpPage} +\pageto{DoubleFloat}{DoubleFloatXmpPage} +\pageto{DecimalExpansion}{DecimalExpansionXmpPage} +\pageto{ContinuedFraction}{ContinuedFractionXmpPage} +\pageto{PartialFraction}{PartialFractionXmpPage} +\pageto{RadixExpansion}{RadixExpansionXmpPage} +\pageto{Modular Arithmetic and Prime Fields}{ugxProblemFinitePrimePage} <>= \begin{page}{ugIntroNumbersPage}{1.5. Numbers} \beginscroll @@ -24087,19 +24119,6 @@ Complex numbers with floating point parts are also available. }{ \spadpaste{exp(\%pi/4.0 * \%i)} } -%%--> These are not numbers: -%\xtc{ -%The real and imaginary parts can be symbolic. -%}{ -%\spadcommand{complex(u,v) \bound{cuv}} -%} -%\xtc{ -%Of course, you can do complex arithmetic with these also. -%See \downlink{`Complex'}{ComplexXmpPage}\ignore{Complex} -for more information. -%}{ -%\spadcommand{\% ** 2 \free{cuv}} -%} \xtc{ Every rational number has an exact representation as a repeating decimal expansion @@ -25752,7 +25771,9 @@ manipulates types and modes internally to resolve ambiguities. @ \pagehead{ugTypesBasicPage}{ug02.ht}{The Basic Idea} -\pageto{notitle}{ugTypesBasicDomainConsPage} +\pagepic{ps/v71ugtypesbasicpage.eps}{ugTypesBasicPage} +\pagefrom{Conversion}{ugTypesConvertPage} +\pageto{Domain Constructors}{ugTypesBasicDomainConsPage} <>= \begin{page}{ugTypesBasicPage}{2.1. The Basic Idea} \beginscroll @@ -25847,8 +25868,10 @@ and 17,'' and so on. @ \pagehead{ugTypesBasicDomainConsPage}{ug02.ht}{Domain Constructors} -\pageto{notitle}{ugCategoriesPage} -\pageto{notitle}{ugTypesConvertPage} +\pagepic{ps/v71ugtypesbasicdomainconspage.eps}{ugTypesBasicDomainConsPage} +\pagefrom{The Basic Idea}{ugTypesBasicPage} +\pageto{Categories}{ugCategoriesPage} +\pageto{Conversion}{ugTypesConvertPage} <>= \begin{page}{ugTypesBasicDomainConsPage}{2.1.1. Domain Constructors} \beginscroll @@ -27059,7 +27082,9 @@ object of type \axiomType{Any} internally looks like @ \pagehead{ugTypesConvertPage}{ug02.ht}{Conversion} -\pageto{notitle}{ugTypesBasicPage} +\pagepic{ps/v71ugtypesconvertpage.eps}{ugTypesConvertPage} +\pagefrom{Complex}{ComplexXmpPage} +\pageto{The Basic Idea}{ugTypesBasicPage} <>= \begin{page}{ugTypesConvertPage}{2.7. Conversion} \beginscroll @@ -36524,6 +36549,7 @@ with Axiom. \pagehead{ugProblemNumericPage}{ug08.ht}{Numeric Functions} \pagepic{ps/v71ugproblemnumericpage.eps}{ugProblemNumericPage} \pagefrom{Axiom Number Types}{NumberPage} +\pagefrom{Complex}{ComplexXmpPage} \pageto{An Overview of Axiom}{ugIntroPage} \pageto{Float}{FloatXmpPage} \pageto{DoubleFloat}{DoubleFloatXmpPage} @@ -40869,8 +40895,10 @@ Their intersection is equal to the radical of the ideal of \axiom{l}. @ \pagehead{ugProblemGaloisPage}{ug08.ht}{Computation of Galois Groups} -\pageto{notitle}{FactoredXmpPage} -\pageto{notitle}{ugAvailCLEFPage} +\pagepic{ps/v71ugproblemgaloispage.eps}{ugProblemGaloisPage} +\pagefrom{FactoredFunctions2}{FactoredFnsTwoXmpPage} +\pageto{Factored}{FactoredXmpPage} +\pageto{Clef}{ugAvailCLEFPage} <>= \begin{page}{ugProblemGaloisPage}{8.13. Computation of Galois Groups} \beginscroll @@ -43362,19 +43390,20 @@ environment and produces the result. \endscroll \autobuttons @ \chapter{Users Guide Chapter 12 (ug12.ht)} \pagehead{ugCategoriesPage}{ug12.ht}{Categories} -\pageto{notitle}{ugTypesBasicDomainConsPage} -\pageto{notitle}{ugCategoriesDefsPage} -\pageto{notitle}{ugCategoriesExportsPage} -\pageto{notitle}{ugCategoriesDocPage} -\pageto{notitle}{ugCategoriesHierPage} -\pageto{notitle}{ugCategoriesMembershipPage} -\pageto{notitle}{ugCategoriesDefaultsPage} -\pageto{notitle}{ugCategoriesAxiomsPage} -\pageto{notitle}{ugCategoriesCorrectnessPage} -\pageto{notitle}{ugCategoriesAttributesPage} -\pageto{notitle}{ugCategoriesParametersPage} -\pageto{notitle}{ugCategoriesConditionalsPage} -\pageto{notitle}{ugCategoriesAndPackagesPage} +\pagefrom{Domain Constructors}{ugTypesBasicDomainConsPage} +\pageto{Domain Constructors}{ugTypesBasicDomainConsPage} +\pageto{Definitions}{ugCategoriesDefsPage} +\pageto{Exports}{ugCategoriesExportsPage} +\pageto{Documentation}{ugCategoriesDocPage} +\pageto{Hierarchies}{ugCategoriesHierPage} +\pageto{Membership}{ugCategoriesMembershipPage} +\pageto{Defaults}{ugCategoriesDefaultsPage} +\pageto{Axioms}{ugCategoriesAxiomsPage} +\pageto{Correctness}{ugCategoriesCorrectnessPage} +\pageto{Attributes}{ugCategoriesAttributesPage} +\pageto{Parameters}{ugCategoriesParametersPage} +\pageto{Conditionals}{ugCategoriesConditionalsPage} +\pageto{Anonymous Categories}{ugCategoriesAndPackagesPage} <>= \begin{page}{ugCategoriesPage}{12. Categories} \beginscroll @@ -43444,6 +43473,7 @@ let's see how you define them in Axiom. @ \pagehead{ugCategoriesDefsPage}{ug12.ht}{Definitions} +\pagefrom{Categories}{ugCategoriesPage} \pageto{notitle}{ugTypesPage} <>= \begin{page}{ugCategoriesDefsPage}{12.1. Definitions} @@ -43529,6 +43559,7 @@ In fact, the {\tt Type} is optional in this line; ``{\tt with @ \pagehead{ugCategoriesExportsPage}{ug12.ht}{Exports} +\pagefrom{Categories}{ugCategoriesPage} <>= \begin{page}{ugCategoriesExportsPage}{12.2. Exports} \beginscroll @@ -43580,6 +43611,7 @@ aThreeArgumentOperation: ($,Integer,$) -> Fraction($) @ \pagehead{ugCategoriesDocPage}{ug12.ht}{Documentation} +\pagefrom{Categories}{ugCategoriesPage} <>= \begin{page}{ugCategoriesDocPage}{12.3. Documentation} \beginscroll @@ -43661,6 +43693,7 @@ category descriptions. @ \pagehead{ugCategoriesHierPage}{ug12.ht}{Hierarchies} +\pagefrom{Categories}{ugCategoriesPage} <>= \begin{page}{ugCategoriesHierPage}{12.4. Hierarchies} \beginscroll @@ -43701,6 +43734,7 @@ included for emphasis. @ \pagehead{ugCategoriesMembershipPage}{ug12.ht}{Membership} +\pagefrom{Categories}{ugCategoriesPage} <>= \begin{page}{ugCategoriesMembershipPage}{12.5. Membership} \beginscroll @@ -43761,8 +43795,9 @@ operations \spadop{*} and \spadop{**}. @ \pagehead{ugCategoriesDefaultsPage}{ug12.ht}{Defaults} -\pageto{notitle}{ugCategoriesHierPage} -\pageto{notitle}{ugPackagesPage} +\pagefrom{Categories}{ugCategoriesPage} +\pageto{Hierarchies}{ugCategoriesHierPage} +\pageto{Packages}{ugPackagesPage} <>= \begin{page}{ugCategoriesDefaultsPage}{12.6. Defaults} \beginscroll @@ -43850,7 +43885,8 @@ as automatically generated by Axiom from the above definition of @ \pagehead{ugCategoriesAxiomsPage}{ug12.ht}{Axioms} -\pageto{notitle}{ugCategoriesDefaultsPage} +\pagefrom{Categories}{ugCategoriesPage} +\pageto{Defaults}{ugCategoriesDefaultsPage} <>= \begin{page}{ugCategoriesAxiomsPage}{12.7. Axioms} \beginscroll @@ -43903,6 +43939,7 @@ implicit by the use of the name \spadtype{Ring}. @ \pagehead{ugCategoriesCorrectnessPage}{ug12.ht}{Correctness} +\pagefrom{Categories}{ugCategoriesPage} <>= \begin{page}{ugCategoriesCorrectnessPage}{12.8. Correctness} \beginscroll @@ -43959,7 +43996,8 @@ presume that the ring axioms for \spadop{+} hold. @ \pagehead{ugCategoriesAttributesPage}{ug12.ht}{Attributes} -\pageto{notitle}{ugDomainsAssertionsPage} +\pagefrom{Categories}{ugCategoriesPage} +\pageto{Category Assertions}{ugDomainsAssertionsPage} <>= \begin{page}{ugCategoriesAttributesPage}{12.9. Attributes} \beginscroll @@ -44042,6 +44080,7 @@ to rings but do not have this attribute). @ \pagehead{ugCategoriesParametersPage}{ug12.ht}{Parameters} +\pagefrom{Categories}{ugCategoriesPage} <>= \begin{page}{ugCategoriesParametersPage}{12.10. Parameters} \beginscroll @@ -44101,7 +44140,8 @@ TwoDimensionalArrayCategory(R,\ Row,\ Col)\ with\ ...}\newline @ \pagehead{ugCategoriesConditionalsPage}{ug12.ht}{Conditionals} -\pageto{notitle}{ugPackagesCondsPage} +\pagefrom{Categories}{ugCategoriesPage} +\pageto{Conditionals}{ugPackagesCondsPage} <>= \begin{page}{ugCategoriesConditionalsPage}{12.11. Conditionals} \beginscroll @@ -44170,7 +44210,8 @@ example. @ \pagehead{ugCategoriesAndPackagesPage}{ug12.ht}{Anonymous Categories} -\pageto{notitle}{ugPackagesAbstractPage} +\pagefrom{Categories}{ugCategoriesPage} +\pageto{Abstract Datatypes}{ugPackagesAbstractPage} <>= \begin{page}{ugCategoriesAndPackagesPage}{12.12. Anonymous Categories} \beginscroll diff --git a/books/ps/v71integerpage.eps b/books/ps/v71integerpage.eps index 84afd7d..d5d5c64 100644 --- a/books/ps/v71integerpage.eps +++ b/books/ps/v71integerpage.eps @@ -1,11 +1,11 @@ %!PS-Adobe-3.0 EPSF-3.0 %%Creator: GIMP PostScript file plugin V 1.17 by Peter Kirchgessner -%%Title: integers.eps -%%CreationDate: Thu Jun 26 21:05:43 2008 +%%Title: integerpage.eps +%%CreationDate: Sat Jun 28 07:00:31 2008 %%DocumentData: Clean7Bit %%LanguageLevel: 2 %%Pages: 1 -%%BoundingBox: 14 14 696 595 +%%BoundingBox: 14 14 696 609 %%EndComments %%BeginProlog % Use own dictionary to avoid conflicts @@ -15,12 +15,12 @@ % Translate for offset 14.173228346456694 14.173228346456694 translate % Translate to begin of first scanline -0 580.79194854164359 translate -681.59055118110246 -580.79194854164359 scale +0 594.23176222690483 translate +681.59055118110246 -594.23176222690483 scale % Image geometry -710 605 8 +710 619 8 % Transformation matrix -[ 710 0 0 605 0 0 ] +[ 710 0 0 619 0 0 ] % Strings to hold RGB-samples per scanline /rstr 710 string def /gstr 710 string def @@ -29,7 +29,7 @@ {currentfile /ASCII85Decode filter /RunLengthDecode filter gstr readstring pop} {currentfile /ASCII85Decode filter /RunLengthDecode filter bstr readstring pop} true 3 -%%BeginData: 196526 ASCII Bytes +%%BeginData: 197144 ASCII Bytes colorimage quD:2JN\QIJN\QI`BF,!J,~> quD:/JNA?CJNA?C`B*nsJ,~> @@ -2494,165 +2494,159 @@ s8M$Z_`*)~> !BpJ^m=G:gs+13$s+13hs8MBdeieN~> !BU8[l%/kcs+13$s+13hs8M6`c8pI~> !B:&Xj+75]s+13$s+13hs8M$Z_`*)~> -!BpJ^m@+(Q!8[\P!.k1Ms8;rPs8;qPs8N)8s8;rEs8;qKs8MBdeieN~> -!BU8[l'hYM!8[\P!.k1Ms8;rPs8;qPs8N)8s8;rEs8;qKs8M6`c8pI~> -!B:&Xj-p#G!8[\P!.k1Ms8;rPs8;qPs8N)8s8;rEs8;qKs8M$Z_`*)~> -!BpJ^mFqU=!!<0#!6G3 -!BU8[l.Z19!!<0#!6G3 -!B:&Xj4aP3!!<0#!6G3 -!BpJ^mHsrH!;ull!6,! -!BU8[l0\ND!;ull!6,! -!B:&Xj6cm>!;ull!6,! -!BpJ^mHsrH!;uls!<)rs!<)rr!<)rs!!*&t!;lfp!<)rr!<<)u!<)rp!;c`q!;$6j!;ulr!!*&t -!<)rn!;ulq!6P6@!;lcr!6"m;!8[YT!6bBB!4Vt.!5AI5!7LlI!.k1Js8MBdeieN~> -!BU8[l0\ND!;uls!<)rs!<)rr!<)rs!!*&t!;lfp!<)rr!<<)u!<)rp!;c`q!;$6j!;ulr!!*&t -!<)rn!;ulq!6P6@!;lcr!6"m;!8[YT!6bBB!4Vt.!5AI5!7LlI!.k1Js8M6`c8pI~> -!B:&Xj6cm>!;uls!<)rs!<)rr!<)rs!!*&t!;lfp!<)rr!<<)u!<)rp!;c`q!;$6j!;ulr!!*&t -!<)rn!;ulq!6P6@!;lcr!6"m;!8[YT!6bBB!4Vt.!5AI5!7LlI!.k1Js8M$Z_`*)~> -!BpJ^mHsrR!!`H'rrE'!s8E#ss8N)rs8N*!s7lZps7cTns7lZps7ZNns7lZls8N)js8N)ss7cTn -s7lZos7lZ=rr<&ls8;rqs8N'!s8;rps8;rqs8Duus8E#qs8;rmrr<&ks8E#qs8N'!s8;rqs7u`n -s8;rqs8Duus8E#ts8N''rr<'!rr<&ss8;rps7u`ns8E#os8;rqs8N'!s8;rks8;rqs8N'!s8;rp -s8;ourrDfnr;ccqrW)uurW)lrr;cfrrr<9'!!*'!!!*#urr<'!r;cZn!!)ipr;c]or;Zlu!;HNl -!;lfm!.k.Ms8MBdeieN~> -!BU8[l0\NN!!`H'rrE'!s8E#ss8N)rs8N*!s7lZps7cTns7lZps7ZNns7lZls8N)js8N)ss7cTn -s7lZos7lZ=rr<&ls8;rqs8N'!s8;rps8;rqs8Duus8E#qs8;rmrr<&ks8E#qs8N'!s8;rqs7u`n -s8;rqs8Duus8E#ts8N''rr<'!rr<&ss8;rps7u`ns8E#os8;rqs8N'!s8;rks8;rqs8N'!s8;rp -s8;ourrDfnr;ccqrW)uurW)lrr;cfrrr<9'!!*'!!!*#urr<'!r;cZn!!)ipr;c]or;Zlu!;HNl -!;lfm!.k.Ms8M6`c8pI~> -!B:&Xj6cmH!!`H'rrE'!s8E#ss8N)rs8N*!s7lZps7cTns7lZps7ZNns7lZls8N)js8N)ss7cTn -s7lZos7lZ=rr<&ls8;rqs8N'!s8;rps8;rqs8Duus8E#qs8;rmrr<&ks8E#qs8N'!s8;rqs7u`n -s8;rqs8Duus8E#ts8N''rr<'!rr<&ss8;rps7u`ns8E#os8;rqs8N'!s8;rks8;rqs8N'!s8;rp -s8;ourrDfnr;ccqrW)uurW)lrr;cfrrr<9'!!*'!!!*#urr<'!r;cZn!!)ipr;c]or;Zlu!;HNl -!;lfm!.k.Ms8M$Z_`*)~> -!BpJ^mHsrQ!!rT)rrE'!rr<&ts8N)os8E#ss8E#us8E#ts8N*!s8E#ss8E#ts8;rts8N*!s8N)t -s8N)rs8N)js8N)rs8E#ts8N)ss8N)rs8E#ss8E#Crr<&mrr<&trr<&ss8N)trr<&trr<&trr<&r -s8N)urr<&trr<&trr<&prr<&irr<&qs8N)trr<&rrr<&prr<&trr<&rs8N)urr<&us8N*!s8N*! -rr<&urr<&trr<&qrr<&mrr<&qrr<&trr<&ss8N)trr<&orr<&trr<&ss8N)trr<&trr<&ts8N)o -rr<&trr<&srr<&trr<&srr<&trr<&ts8N*!s8N*!rr<&us8N)trr<&qrr<&qrr<&trr<&srr<&t -s8N)orr<&trr<&qrr<%Ms8;orm/bd$J,~> -!BU8[l0\NM!!rT)rrE'!rr<&ts8N)os8E#ss8E#us8E#ts8N*!s8E#ss8E#ts8;rts8N*!s8N)t -s8N)rs8N)js8N)rs8E#ts8N)ss8N)rs8E#ss8E#Crr<&mrr<&trr<&ss8N)trr<&trr<&trr<&r -s8N)urr<&trr<&trr<&prr<&irr<&qs8N)trr<&rrr<&prr<&trr<&rs8N)urr<&us8N*!s8N*! -rr<&urr<&trr<&qrr<&mrr<&qrr<&trr<&ss8N)trr<&orr<&trr<&ss8N)trr<&trr<&ts8N)o -rr<&trr<&srr<&trr<&srr<&trr<&ts8N*!s8N*!rr<&us8N)trr<&qrr<&qrr<&trr<&srr<&t -s8N)orr<&trr<&qrr<%Ms8;orklK'jJ,~> -!B:&Xj6cmG!!rT)rrE'!rr<&ts8N)os8E#ss8E#us8E#ts8N*!s8E#ss8E#ts8;rts8N*!s8N)t -s8N)rs8N)js8N)rs8E#ts8N)ss8N)rs8E#ss8E#Crr<&mrr<&trr<&ss8N)trr<&trr<&trr<&r -s8N)urr<&trr<&trr<&prr<&irr<&qs8N)trr<&rrr<&prr<&trr<&rs8N)urr<&us8N*!s8N*! -rr<&urr<&trr<&qrr<&mrr<&qrr<&trr<&ss8N)trr<&orr<&trr<&ss8N)trr<&trr<&ts8N)o -rr<&trr<&srr<&trr<&srr<&trr<&ts8N*!s8N*!rr<&us8N)trr<&qrr<&qrr<&trr<&srr<&t -s8N)orr<&trr<&qrr<%Ms8;orirR%VJ,~> -!BpJ^mHsrR!!`H'rrE'!s8E#ss8N)os8N)rs8N*!s8N)ts8N*!s8N)rs8N)us8E#js8N)rs8N)j -s8N)rs8N)ts8N)ss8N)rs8N)rs8N)Drr<&nrr<&rrr<&trr<&srr<&urr<&rrr<&srr<&jrr<&p -rr<&irr<&qrr<&srr<&rrr<&qrr<&rrr<&srr<&prr<&urr<&urr<&prr<&qrr<&mrr<&rrr<&r -rr<&trr<&srr<&jrr<&srr<&srr<&urr<&rrr<&prr<&rrr<&srrW9$rrDcm!!)ut!!*#u!!*#u -!!*#u!!)or!!)or!!)or!!)or!!)ut!!)rs!!)ip!!)or!!)or!!%TMr;Zc`!S0Da~> -!BU8[l0\NN!!`H'rrE'!s8E#ss8N)os8N)rs8N*!s8N)ts8N*!s8N)rs8N)us8E#js8N)rs8N)j -s8N)rs8N)ts8N)ss8N)rs8N)rs8N)Drr<&nrr<&rrr<&trr<&srr<&urr<&rrr<&srr<&jrr<&p -rr<&irr<&qrr<&srr<&rrr<&qrr<&rrr<&srr<&prr<&urr<&urr<&prr<&qrr<&mrr<&rrr<&r -rr<&trr<&srr<&jrr<&srr<&srr<&urr<&rrr<&prr<&rrr<&srrW9$rrDcm!!)ut!!*#u!!*#u -!!*#u!!)or!!)or!!)or!!)or!!)ut!!)rs!!)ip!!)or!!)or!!%TMr;Zc\!R<`V~> -!B:&Xj6cmH!!`H'rrE'!s8E#ss8N)os8N)rs8N*!s8N)ts8N*!s8N)rs8N)us8E#js8N)rs8N)j -s8N)rs8N)ts8N)ss8N)rs8N)rs8N)Drr<&nrr<&rrr<&trr<&srr<&urr<&rrr<&srr<&jrr<&p -rr<&irr<&qrr<&srr<&rrr<&qrr<&rrr<&srr<&prr<&urr<&urr<&prr<&qrr<&mrr<&rrr<&r -rr<&trr<&srr<&jrr<&srr<&srr<&urr<&rrr<&prr<&rrr<&srrW9$rrDcm!!)ut!!*#u!!*#u -!!*#u!!)or!!)or!!)or!!)or!!)ut!!)rs!!)ip!!)or!!)or!!%TMr;ZcV!Q-jH~> -!BpJ^mHsrQ!!rT)rrE'!rr<&ts8N)us7$*hs8N)ts8N*!s7ZNms8N)ps7lZls8N)js8N)rs8N)t -s8N)ss8N)rs8N)rs8N)Drr<&ss8;ots7lZnrr<&srr<&us7lZmrr<&os8)flrr<&irr<&qrr<&s -rr<&rrr<&qrr<&rrr<&srr<&prr<&urr<&urr<&us8)fmrr<&mrr<&rrr<&rrr<&trr<&srr<&o -s8)forr<&srr<&urr<&rrr<&ps7lZls8N)qs8)fprr<&urr<&urr<&urr<&rrr<&rrr<&rs7lZm -s8E#lrr<&rrr<&rrr<%Ms8;orm/bd$J,~> -!BU8[l0\NM!!rT)rrE'!rr<&ts8N)us7$*hs8N)ts8N*!s7ZNms8N)ps7lZls8N)js8N)rs8N)t -s8N)ss8N)rs8N)rs8N)Drr<&ss8;ots7lZnrr<&srr<&us7lZmrr<&os8)flrr<&irr<&qrr<&s -rr<&rrr<&qrr<&rrr<&srr<&prr<&urr<&urr<&us8)fmrr<&mrr<&rrr<&rrr<&trr<&srr<&o -s8)forr<&srr<&urr<&rrr<&ps7lZls8N)qs8)fprr<&urr<&urr<&urr<&rrr<&rrr<&rs7lZm -s8E#lrr<&rrr<&rrr<%Ms8;orklK'jJ,~> -!B:&Xj6cmG!!rT)rrE'!rr<&ts8N)us7$*hs8N)ts8N*!s7ZNms8N)ps7lZls8N)js8N)rs8N)t -s8N)ss8N)rs8N)rs8N)Drr<&ss8;ots7lZnrr<&srr<&us7lZmrr<&os8)flrr<&irr<&qrr<&s -rr<&rrr<&qrr<&rrr<&srr<&prr<&urr<&urr<&us8)fmrr<&mrr<&rrr<&rrr<&trr<&srr<&o -s8)forr<&srr<&urr<&rrr<&ps7lZls8N)qs8)fprr<&urr<&urr<&urr<&rrr<&rrr<&rs7lZm -s8E#lrr<&rrr<&rrr<%Ms8;orirR%VJ,~> -!BpJ^mHsrR!!`H'rrE'!s8E#ss8N)us7$*hs8N)ts8N*!s7ZNms8N)qs7cTks8N)js8N)rs8N)t -s8N)ss8N)rs8N)rs8N)Drr<&qrrW9$rrDcm!!)rs!!*#u!!)]l!!)ip!!)rs!!)ip!!)Ti!!)lq -!!)rs!!)or!!)lq!!)or!!)rs!!)ip!!*#u!!*#u!s&B$!;uis!;c]q!;?Em!;lcr!;lcr!<)ot -!;uis!;ZWp!;uis!;uis!;uis!<2uu!;lcr!;ZWp!;- -!BU8[l0\NN!!`H'rrE'!s8E#ss8N)us7$*hs8N)ts8N*!s7ZNms8N)qs7cTks8N)js8N)rs8N)t -s8N)ss8N)rs8N)rs8N)Drr<&qrrW9$rrDcm!!)rs!!*#u!!)]l!!)ip!!)rs!!)ip!!)Ti!!)lq -!!)rs!!)or!!)lq!!)or!!)rs!!)ip!!*#u!!*#u!s&B$!;uis!;c]q!;?Em!;lcr!;lcr!<)ot -!;uis!;ZWp!;uis!;uis!;uis!<2uu!;lcr!;ZWp!;- -!B:&Xj6cmH!!`H'rrE'!s8E#ss8N)us7$*hs8N)ts8N*!s7ZNms8N)qs7cTks8N)js8N)rs8N)t -s8N)ss8N)rs8N)rs8N)Drr<&qrrW9$rrDcm!!)rs!!*#u!!)]l!!)ip!!)rs!!)ip!!)Ti!!)lq -!!)rs!!)or!!)lq!!)or!!)rs!!)ip!!*#u!!*#u!s&B$!;uis!;c]q!;?Em!;lcr!;lcr!<)ot -!;uis!;ZWp!;uis!;uis!;uis!<2uu!;lcr!;ZWp!;- -!BpJ^mHsrQ!!rT)rrE'!rr<&ss8N)ss8N'!s8E#ns8N)ts8N*!s8E#ms8N)qs8N)ss8N)rs8N)j -s8N)rs8N)ts8N)ss8N)rs8E#ss8E#Brr<&rrrW9$rrDcm!!)rs!!*#u!!)]l!!)ip!!)rs!!)ip -!!)Ti!!)lq!!)rs!!)or!!)lq!!)or!!)rs!!)ip!!*#u!!*#u!s&B$!;uis!;c]q!;?Em!;lcr -!;lcr!<)ot!;uis!;ZWp!;uis!;uis!;uis!<2uu!;lcr!;ZWp!;6?o!<<'!r;Q`sr;Q`srVlit -rr2rurr2rurr2ruqu6Wrqu6Wrqu6WrpAY*mr;Q`sq>UEpqu6Wrqu6WrJcGZJrp9a;4b*~> -!BU8[l0\NM!!rT)rrE'!rr<&ss8N)ss8N'!s8E#ns8N)ts8N*!s8E#ms8N)qs8N)ss8N)rs8N)j -s8N)rs8N)ts8N)ss8N)rs8E#ss8E#Brr<&rrrW9$rrDcm!!)rs!!*#u!!)]l!!)ip!!)rs!!)ip -!!)Ti!!)lq!!)rs!!)or!!)lq!!)or!!)rs!!)ip!!*#u!!*#u!s&B$!;uis!;c]q!;?Em!;lcr -!;lcr!<)ot!;uis!;ZWp!;uis!;uis!;uis!<2uu!;lcr!;ZWp!;6?o!<<'!r;Q`sr;Q`srVlit -rr2rurr2rurr2ruqu6Wrqu6Wrqu6WrpAY*mr;Q`sq>UEpqu6Wrqu6WrJcGZJrojI/3e.~> -!B:&Xj6cmG!!rT)rrE'!rr<&ss8N)ss8N'!s8E#ns8N)ts8N*!s8E#ms8N)qs8N)ss8N)rs8N)j -s8N)rs8N)ts8N)ss8N)rs8E#ss8E#Brr<&rrrW9$rrDcm!!)rs!!*#u!!)]l!!)ip!!)rs!!)ip -!!)Ti!!)lq!!)rs!!)or!!)lq!!)or!!)rs!!)ip!!*#u!!*#u!s&B$!;uis!;c]q!;?Em!;lcr -!;lcr!<)ot!;uis!;ZWp!;uis!;uis!;uis!<2uu!;lcr!;ZWp!;6?o!<<'!r;Q`sr;Q`srVlit -rr2rurr2rurr2ruqu6Wrqu6Wrqu6WrpAY*mr;Q`sq>UEpqu6Wrqu6WrJcGZJro4$s2h1~> -!BpJ^mHsrR!!`H'rrE'!s8E#rs7cTos7lZps8;rts8;rts7lZps7lZos7ZNns7lZjs7lZps8;rt -s8;rts7lZos7lZ +!BU8[l,E]&!.k0Js8;rPs8;qPs8N)8s8;rEs8;qKs8M6`c8pI~> +!B:&Xj2M&u!.k0Js8;rPs8;qPs8N)8s8;rEs8;qKs8M$Z_`*)~> +!BpJ^mG.a;!:p0i!.k15s8;ourrC";!!)Ti!!)Bc!!(7C!!)`m!!'q:!!'b5!!(FH!!%TMrVula !S0Da~> -!BU8[l0\NN!!`H'rrE'!s8E#rs7cTos7lZps8;rts8;rts7lZps7lZos7ZNns7lZjs7lZps8;rt -s8;rts7lZos7lZ -!B:&Xj6cmH!!`H'rrE'!s8E#rs7cTos7lZps8;rts8;rts7lZps7lZos7ZNns7lZjs7lZps8;rt -s8;rts7lZos7lZ -!BpJ^mHsrQ!!rT)rrE'!rr<&qs8)fos8)frs8;rts8;rrs8)frs7lZns82iss8E#us7lZjs7lZp -s8;rts8;rts7lZms8;rgHnr;c`p! -!BU8[l0\NM!!rT)rrE'!rr<&qs8)fos8)frs8;rts8;rrs8)frs7lZns82iss8E#us7lZjs7lZp -s8;rts8;rts7lZms8;rgHnr;c`p! -!B:&Xj6cmG!!rT)rrE'!rr<&qs8)fos8)frs8;rts8;rrs8)frs7lZns82iss8E#us7lZjs7lZp -s8;rts8;rts7lZms8;rgHnr;c`p! -!BpJ^mHsrH!.k0$s+13Lrr<%Ms1\O4m/bd$J,~> -!BU8[l0\ND!.k0$s+13Lrr<%Ms1\O4klK'jJ,~> -!B:&Xj6cm>!.k0$s+13Lrr<%Ms1\O4irR%VJ,~> -!BpJ^mHsrH!.k0$s+13Lrr<%Ms1\O4m/bd$J,~> -!BU8[l0\ND!.k0$s+13Lrr<%Ms1\O4klK'jJ,~> -!B:&Xj6cm>!.k0$s+13Lrr<%Ms1\O4irR%VJ,~> -!BpJ^m=G:gs+13,rr<%Ms1\O4m/bd$J,~> -!BU8[l%/kcs+13,rr<%Ms1\O4klK'jJ,~> -!B:&Xj+75]s+13,rr<%Ms1\O4irR%VJ,~> -!BpJ^m=G:gs+13-s8;qKs1n[6m/bd$J,~> -!BU8[l%/kcs+13-s8;qKs1n[6klK'jJ,~> -!B:&Xj+75]s+13-s8;qKs1n[6irR%VJ,~> +!BpJ^mHsrH!;ulm!:p0i!.k17s8N)ts8N);rr<&irr<&drr<&Brr<&mrr<&:rr<&5rr<&Irr<%M +s8;orm/bd$J,~> +!BU8[l0\ND!;ulm!:p0i!.k17s8N)ts8N);rr<&irr<&drr<&Brr<&mrr<&:rr<&5rr<&Irr<%M +s8;orklK'jJ,~> +!B:&Xj6cm>!;ulm!:p0i!.k17s8N)ts8N);rr<&irr<&drr<&Brr<&mrr<&:rr<&5rr<&Irr<%M +s8;orirR%VJ,~> +!BpJ^mHsrH!;ZZp!;ulr!!*&t!<3#o!;lfp!;lfp!!*&u!<)rr!<)rr!<<)u!1Nof!;lcr!6"m; +!8[YT!6bBB!4Vt.!5AI5!7LlI!.k1Js8MBdeieN~> +!BU8[l0\ND!;ZZp!;ulr!!*&t!<3#o!;lfp!;lfp!!*&u!<)rr!<)rr!<<)u!1Nof!;lcr!6"m; +!8[YT!6bBB!4Vt.!5AI5!7LlI!.k1Js8M6`c8pI~> +!B:&Xj6cm>!;ZZp!;ulr!!*&t!<3#o!;lfp!;lfp!!*&u!<)rr!<)rr!<<)u!1Nof!;lcr!6"m; +!8[YT!6bBB!4Vt.!5AI5!7LlI!.k1Js8M$Z_`*)~> +!BpJ^mHsrR!!`H'rrE'!s8E#os8N)ss7cTos7lZns7lZos7cTos7lZps7ZM`rr<&ls8;rqs8N'! +s8;rps8;rqs8Duus8E#qs8;rmrr<&ks8E#qs8N'!s8;rqs7u`ns8;rqs8Duus8E#ts8N''rr<'! +rr<&ss8;rps7u`ns8E#os8;rqs8N'!s8;rks8;rqs8N'!s8;rps8;ourrDfnr;ccqrW)uurW)lr +r;cfrrr<9'!!*'!!!*#urr<'!r;cZn!!)ipr;c]or;Zlu!;HNl!;lfm!.k.Ms8MBdeieN~> +!BU8[l0\NN!!`H'rrE'!s8E#os8N)ss7cTos7lZns7lZos7cTos7lZps7ZM`rr<&ls8;rqs8N'! +s8;rps8;rqs8Duus8E#qs8;rmrr<&ks8E#qs8N'!s8;rqs7u`ns8;rqs8Duus8E#ts8N''rr<'! +rr<&ss8;rps7u`ns8E#os8;rqs8N'!s8;rks8;rqs8N'!s8;rps8;ourrDfnr;ccqrW)uurW)lr +r;cfrrr<9'!!*'!!!*#urr<'!r;cZn!!)ipr;c]or;Zlu!;HNl!;lfm!.k.Ms8M6`c8pI~> +!B:&Xj6cmH!!`H'rrE'!s8E#os8N)ss7cTos7lZns7lZos7cTos7lZps7ZM`rr<&ls8;rqs8N'! +s8;rps8;rqs8Duus8E#qs8;rmrr<&ks8E#qs8N'!s8;rqs7u`ns8;rqs8Duus8E#ts8N''rr<'! +rr<&ss8;rps7u`ns8E#os8;rqs8N'!s8;rks8;rqs8N'!s8;rps8;ourrDfnr;ccqrW)uurW)lr +r;cfrrr<9'!!*'!!!*#urr<'!r;cZn!!)ipr;c]or;Zlu!;HNl!;lfm!.k.Ms8M$Z_`*)~> +!BpJ^mHsrQ!!rT)rrE'!rr<&ps8N)rs8E#ts8N)ts8N)qs8E#ss8Duus8E#ts8E#us8E#ss8E#t +s8;rts8N(hrr<&mrr<&trr<&ss8N)trr<&trr<&trr<&rs8N)urr<&trr<&trr<&prr<&irr<&q +s8N)trr<&rrr<&prr<&trr<&rs8N)urr<&us8N*!s8N*!rr<&urr<&trr<&qrr<&mrr<&qrr<&t +rr<&ss8N)trr<&orr<&trr<&ss8N)trr<&trr<&ts8N)orr<&trr<&srr<&trr<&srr<&trr<&t +s8N*!s8N*!rr<&us8N)trr<&qrr<&qrr<&trr<&srr<&ts8N)orr<&trr<&qrr<%Ms8;orm/bd$ +J,~> +!BU8[l0\NM!!rT)rrE'!rr<&ps8N)rs8E#ts8N)ts8N)qs8E#ss8Duus8E#ts8E#us8E#ss8E#t +s8;rts8N(hrr<&mrr<&trr<&ss8N)trr<&trr<&trr<&rs8N)urr<&trr<&trr<&prr<&irr<&q +s8N)trr<&rrr<&prr<&trr<&rs8N)urr<&us8N*!s8N*!rr<&urr<&trr<&qrr<&mrr<&qrr<&t +rr<&ss8N)trr<&orr<&trr<&ss8N)trr<&trr<&ts8N)orr<&trr<&srr<&trr<&srr<&trr<&t +s8N*!s8N*!rr<&us8N)trr<&qrr<&qrr<&trr<&srr<&ts8N)orr<&trr<&qrr<%Ms8;orklK'j +J,~> +!B:&Xj6cmG!!rT)rrE'!rr<&ps8N)rs8E#ts8N)ts8N)qs8E#ss8Duus8E#ts8E#us8E#ss8E#t +s8;rts8N(hrr<&mrr<&trr<&ss8N)trr<&trr<&trr<&rs8N)urr<&trr<&trr<&prr<&irr<&q +s8N)trr<&rrr<&prr<&trr<&rs8N)urr<&us8N*!s8N*!rr<&urr<&trr<&qrr<&mrr<&qrr<&t +rr<&ss8N)trr<&orr<&trr<&ss8N)trr<&trr<&ts8N)orr<&trr<&srr<&trr<&srr<&trr<&t +s8N*!s8N*!rr<&us8N)trr<&qrr<&qrr<&trr<&srr<&ts8N)orr<&trr<&qrr<%Ms8;orirR%V +J,~> +!BpJ^mHsrR!!`H'rrE'!s8E#os8N)rs8N)ts8N)ts8N)qs8N)rs8N'#rr<&ss8N*!s8N)rs8N)u +s8E"brr<&nrr<&rrr<&trr<&srr<&urr<&rrr<&srr<&jrr<&prr<&irr<&qrr<&srr<&rrr<&q +rr<&rrr<&srr<&prr<&urr<&urr<&prr<&qrr<&mrr<&rrr<&rrr<&trr<&srr<&jrr<&srr<&s +rr<&urr<&rrr<&prr<&rrr<&srrW9$rrDcm!!)ut!!*#u!!*#u!!*#u!!)or!!)or!!)or!!)or +!!)ut!!)rs!!)ip!!)or!!)or!!%TMr;Zc`!S0Da~> +!BU8[l0\NN!!`H'rrE'!s8E#os8N)rs8N)ts8N)ts8N)qs8N)rs8N'#rr<&ss8N*!s8N)rs8N)u +s8E"brr<&nrr<&rrr<&trr<&srr<&urr<&rrr<&srr<&jrr<&prr<&irr<&qrr<&srr<&rrr<&q +rr<&rrr<&srr<&prr<&urr<&urr<&prr<&qrr<&mrr<&rrr<&rrr<&trr<&srr<&jrr<&srr<&s +rr<&urr<&rrr<&prr<&rrr<&srrW9$rrDcm!!)ut!!*#u!!*#u!!*#u!!)or!!)or!!)or!!)or +!!)ut!!)rs!!)ip!!)or!!)or!!%TMr;Zc\!R<`V~> +!B:&Xj6cmH!!`H'rrE'!s8E#os8N)rs8N)ts8N)ts8N)qs8N)rs8N'#rr<&ss8N*!s8N)rs8N)u +s8E"brr<&nrr<&rrr<&trr<&srr<&urr<&rrr<&srr<&jrr<&prr<&irr<&qrr<&srr<&rrr<&q +rr<&rrr<&srr<&prr<&urr<&urr<&prr<&qrr<&mrr<&rrr<&rrr<&trr<&srr<&jrr<&srr<&s +rr<&urr<&rrr<&prr<&rrr<&srrW9$rrDcm!!)ut!!*#u!!*#u!!*#u!!)or!!)or!!)or!!)or +!!)ut!!)rs!!)ip!!)or!!)or!!%TMr;ZcV!Q-jH~> +!BpJ^mHsrQ!!rT)rrE'!rr<&ps8N)rs8N)ts8N)ts8N)qs7ZKprr<&ss8N*!s7ZNms8N(brr<&s +s8;ots7lZnrr<&srr<&us7lZmrr<&os8)flrr<&irr<&qrr<&srr<&rrr<&qrr<&rrr<&srr<&p +rr<&urr<&urr<&us8)fmrr<&mrr<&rrr<&rrr<&trr<&srr<&os8)forr<&srr<&urr<&rrr<&p +s7lZls8N)qs8)fprr<&urr<&urr<&urr<&rrr<&rrr<&rs7lZms8E#lrr<&rrr<&rrr<%Ms8;or +m/bd$J,~> +!BU8[l0\NM!!rT)rrE'!rr<&ps8N)rs8N)ts8N)ts8N)qs7ZKprr<&ss8N*!s7ZNms8N(brr<&s +s8;ots7lZnrr<&srr<&us7lZmrr<&os8)flrr<&irr<&qrr<&srr<&rrr<&qrr<&rrr<&srr<&p +rr<&urr<&urr<&us8)fmrr<&mrr<&rrr<&rrr<&trr<&srr<&os8)forr<&srr<&urr<&rrr<&p +s7lZls8N)qs8)fprr<&urr<&urr<&urr<&rrr<&rrr<&rs7lZms8E#lrr<&rrr<&rrr<%Ms8;or +klK'jJ,~> +!B:&Xj6cmG!!rT)rrE'!rr<&ps8N)rs8N)ts8N)ts8N)qs7ZKprr<&ss8N*!s7ZNms8N(brr<&s +s8;ots7lZnrr<&srr<&us7lZmrr<&os8)flrr<&irr<&qrr<&srr<&rrr<&qrr<&rrr<&srr<&p +rr<&urr<&urr<&us8)fmrr<&mrr<&rrr<&rrr<&trr<&srr<&os8)forr<&srr<&urr<&rrr<&p +s7lZls8N)qs8)fprr<&urr<&urr<&urr<&rrr<&rrr<&rs7lZms8E#lrr<&rrr<&rrr<%Ms8;or +irR%VJ,~> +!BpJ^mHsrR!!`H'rrE'!s8E#os8N)rs8N)ts8N)ts8N)qs7ZKprr<&ss8N*!s7ZNms8N(brr<&q +rrW9$rrDcm!!)rs!!*#u!!)]l!!)ip!!)rs!!)ip!!)Ti!!)lq!!)rs!!)or!!)lq!!)or!!)rs +!!)ip!!*#u!!*#u!s&B$!;uis!;c]q!;?Em!;lcr!;lcr!<)ot!;uis!;ZWp!;uis!;uis!;uis +!<2uu!;lcr!;ZWp!;- +!BU8[l0\NN!!`H'rrE'!s8E#os8N)rs8N)ts8N)ts8N)qs7ZKprr<&ss8N*!s7ZNms8N(brr<&q +rrW9$rrDcm!!)rs!!*#u!!)]l!!)ip!!)rs!!)ip!!)Ti!!)lq!!)rs!!)or!!)lq!!)or!!)rs +!!)ip!!*#u!!*#u!s&B$!;uis!;c]q!;?Em!;lcr!;lcr!<)ot!;uis!;ZWp!;uis!;uis!;uis +!<2uu!;lcr!;ZWp!;- +!B:&Xj6cmH!!`H'rrE'!s8E#os8N)rs8N)ts8N)ts8N)qs7ZKprr<&ss8N*!s7ZNms8N(brr<&q +rrW9$rrDcm!!)rs!!*#u!!)]l!!)ip!!)rs!!)ip!!)Ti!!)lq!!)rs!!)or!!)lq!!)or!!)rs +!!)ip!!*#u!!*#u!s&B$!;uis!;c]q!;?Em!;lcr!;lcr!<)ot!;uis!;ZWp!;uis!;uis!;uis +!<2uu!;lcr!;ZWp!;- +!BpJ^mHsrQ!!rT)rrE'!rr<&ps8N)rs8N)ts8N)ts8N)ts8N'!s8E#os8E#ts8E#us8E#ms8N(a +rr<&rrrW9$rrDcm!!)rs!!*#u!!)]l!!)ip!!)rs!!)ip!!)Ti!!)lq!!)rs!!)or!!)lq!!)or +!!)rs!!)ip!!*#u!!*#u!s&B$!;uis!;c]q!;?Em!;lcr!;lcr!<)ot!;uis!;ZWp!;uis!;uis +!;uis!<2uu!;lcr!;ZWp!;6?o!<<'!r;Q`sr;Q`srVlitrr2rurr2rurr2ruqu6Wrqu6Wrqu6Wr +pAY*mr;Q`sq>UEpqu6Wrqu6WrJcGZJrp9a;4b*~> +!BU8[l0\NM!!rT)rrE'!rr<&ps8N)rs8N)ts8N)ts8N)ts8N'!s8E#os8E#ts8E#us8E#ms8N(a +rr<&rrrW9$rrDcm!!)rs!!*#u!!)]l!!)ip!!)rs!!)ip!!)Ti!!)lq!!)rs!!)or!!)lq!!)or +!!)rs!!)ip!!*#u!!*#u!s&B$!;uis!;c]q!;?Em!;lcr!;lcr!<)ot!;uis!;ZWp!;uis!;uis +!;uis!<2uu!;lcr!;ZWp!;6?o!<<'!r;Q`sr;Q`srVlitrr2rurr2rurr2ruqu6Wrqu6Wrqu6Wr +pAY*mr;Q`sq>UEpqu6Wrqu6WrJcGZJrojI/3e.~> +!B:&Xj6cmG!!rT)rrE'!rr<&ps8N)rs8N)ts8N)ts8N)ts8N'!s8E#os8E#ts8E#us8E#ms8N(a +rr<&rrrW9$rrDcm!!)rs!!*#u!!)]l!!)ip!!)rs!!)ip!!)Ti!!)lq!!)rs!!)or!!)lq!!)or +!!)rs!!)ip!!*#u!!*#u!s&B$!;uis!;c]q!;?Em!;lcr!;lcr!<)ot!;uis!;ZWp!;uis!;uis +!;uis!<2uu!;lcr!;ZWp!;6?o!<<'!r;Q`sr;Q`srVlitrr2rurr2rurr2ruqu6Wrqu6Wrqu6Wr +pAY*mr;Q`sq>UEpqu6Wrqu6WrJcGZJro4$s2h1~> +!BpJ^mHsrR!!`H'rrE'!s8E#rs7lZps8;rts8;rss7lZps7lZos7lZos7lZps7lY_s8N)trr<&t +rr<&ts8N)trr<&srr<&trr<&ts8N)srr<&prr<&ts8N)prr<&irr<&qrr<&srr<&rrr<&prr<&t +rr<&rrr<&prr<&urr<&urrW9$rrE#trrDoq!!)ut!!)or!!)lq!!)ut!!)rs!!)rs!!)ip!!)ut +rrDus!!)rs!!)ut!!)utrrDio!!)utrrE#t!!)ut!!)ut!!)utrrE#t!!*#u!!*#u!!*#urrE#t +!!)lq!!)lq!!)utrrE#trrE#t!!)fo!!)ut!!)lq!!%TMr;Zc`!S0Da~> +!BU8[l0\NN!!`H'rrE'!s8E#rs7lZps8;rts8;rss7lZps7lZos7lZos7lZps7lY_s8N)trr<&t +rr<&ts8N)trr<&srr<&trr<&ts8N)srr<&prr<&ts8N)prr<&irr<&qrr<&srr<&rrr<&prr<&t +rr<&rrr<&prr<&urr<&urrW9$rrE#trrDoq!!)ut!!)or!!)lq!!)ut!!)rs!!)rs!!)ip!!)ut +rrDus!!)rs!!)ut!!)utrrDio!!)utrrE#t!!)ut!!)ut!!)utrrE#t!!*#u!!*#u!!*#urrE#t +!!)lq!!)lq!!)utrrE#trrE#t!!)fo!!)ut!!)lq!!%TMr;Zc\!R<`V~> +!B:&Xj6cmH!!`H'rrE'!s8E#rs7lZps8;rts8;rss7lZps7lZos7lZos7lZps7lY_s8N)trr<&t +rr<&ts8N)trr<&srr<&trr<&ts8N)srr<&prr<&ts8N)prr<&irr<&qrr<&srr<&rrr<&prr<&t +rr<&rrr<&prr<&urr<&urrW9$rrE#trrDoq!!)ut!!)or!!)lq!!)ut!!)rs!!)rs!!)ip!!)ut +rrDus!!)rs!!)ut!!)utrrDio!!)utrrE#t!!)ut!!)ut!!)utrrE#t!!*#u!!*#u!!*#urrE#t +!!)lq!!)lq!!)utrrE#trrE#t!!)fo!!)ut!!)lq!!%TMr;ZcV!Q-jH~> +!BpJ^mHsrQ!!rT)rrE'!rr<&ss7lZps8;rts8;rrs82los8)fps8;p!rr<&ss8)frs7lY]s8;rp +s8;rqs8E#ts8E#ss8;rqs7u`ns8;ots8E#ts7u`js7u`ps8E#ts8E#ts7u`ns8;rqs7u`ps8E#u +s8N*!s8N*!s8;ots8E#qs8;rrs7u`ns8;rqs8E#ts8E#os8;ots8E#us8E#ts8E#ss8;p!rr<&o +s8;rqs8E#us8E#ss8;ots8Duus8E#us8N*!s8N*!rrE-"r;ccqq>gHnr;c`p! +!BU8[l0\NM!!rT)rrE'!rr<&ss7lZps8;rts8;rrs82los8)fps8;p!rr<&ss8)frs7lY]s8;rp +s8;rqs8E#ts8E#ss8;rqs7u`ns8;ots8E#ts7u`js7u`ps8E#ts8E#ts7u`ns8;rqs7u`ps8E#u +s8N*!s8N*!s8;ots8E#qs8;rrs7u`ns8;rqs8E#ts8E#os8;ots8E#us8E#ts8E#ss8;p!rr<&o +s8;rqs8E#us8E#ss8;ots8Duus8E#us8N*!s8N*!rrE-"r;ccqq>gHnr;c`p! +!B:&Xj6cmG!!rT)rrE'!rr<&ss7lZps8;rts8;rrs82los8)fps8;p!rr<&ss8)frs7lY]s8;rp +s8;rqs8E#ts8E#ss8;rqs7u`ns8;ots8E#ts7u`js7u`ps8E#ts8E#ts7u`ns8;rqs7u`ps8E#u +s8N*!s8N*!s8;ots8E#qs8;rrs7u`ns8;rqs8E#ts8E#os8;ots8E#us8E#ts8E#ss8;p!rr<&o +s8;rqs8E#us8E#ss8;ots8Duus8E#us8N*!s8N*!rrE-"r;ccqq>gHnr;c`p! +!BpJ^mHsrH!6Y?A!.k0$s+140rr<%Ms1\O4m/bd$J,~> +!BU8[l0\ND!6Y?A!.k0$s+140rr<%Ms1\O4klK'jJ,~> +!B:&Xj6cm>!6Y?A!.k0$s+140rr<%Ms1\O4irR%VJ,~> +!BpJ^mHsrH!6bEA!.k0$s+140rr<%Ms1\O4m/bd$J,~> +!BU8[l0\ND!6bEA!.k0$s+140rr<%Ms1\O4klK'jJ,~> +!B:&Xj6cm>!6bEA!.k0$s+140rr<%Ms1\O4irR%VJ,~> +!BpJ^mB?Qe!.k0$s+14/rr<%Ms1\O4m/bd$J,~> +!BU8[l*(-a!.k0$s+14/rr<%Ms1\O4klK'jJ,~> +!B:&Xj0/L[!.k0$s+14/rr<%Ms1\O4irR%VJ,~> +!BpJ^mB?Qf!.k0$s+14/s8;qKs1n[6m/bd$J,~> +!BU8[l*(-b!.k0$s+14/s8;qKs1n[6klK'jJ,~> +!B:&Xj0/L\!.k0$s+14/s8;qKs1n[6irR%VJ,~> !BpJ^m=G:gs+13$s+13hs8MBdeieN~> !BU8[l%/kcs+13$s+13hs8M6`c8pI~> !B:&Xj+75]s+13$s+13hs8M$Z_`*)~> @@ -3460,6 +3454,48 @@ rr;rtrr;rtrVufrqZ$Kor;ZTnq>UEpq#C?oJcE1Yro4$s2h1~> !BpJ^m=G:gs+13$s+13hs8MBdeieN~> !BU8[l%/kcs+13$s+13hs8M6`c8pI~> !B:&Xj+75]s+13$s+13hs8M$Z_`*)~> +!BpJ^m=G:gs+13$s+13hs8MBdeieN~> +!BU8[l%/kcs+13$s+13hs8M6`c8pI~> +!B:&Xj+75]s+13$s+13hs8M$Z_`*)~> +!BpJ^m=G:gs+13$s+13hs8MBdeieN~> +!BU8[l%/kcs+13$s+13hs8M6`c8pI~> +!B:&Xj+75]s+13$s+13hs8M$Z_`*)~> +!BpJ^m=G:gs+13$s+13hs8MBdeieN~> +!BU8[l%/kcs+13$s+13hs8M6`c8pI~> +!B:&Xj+75]s+13$s+13hs8M$Z_`*)~> +!BpJ^m=G:gs+13$s+13hs8MBdeieN~> +!BU8[l%/kcs+13$s+13hs8M6`c8pI~> +!B:&Xj+75]s+13$s+13hs8M$Z_`*)~> +!BpJ^m=G:gs+13$s+13hs8MBdeieN~> +!BU8[l%/kcs+13$s+13hs8M6`c8pI~> +!B:&Xj+75]s+13$s+13hs8M$Z_`*)~> +!BpJ^m=G:gs+13$s+13hs8MBdeieN~> +!BU8[l%/kcs+13$s+13hs8M6`c8pI~> +!B:&Xj+75]s+13$s+13hs8M$Z_`*)~> +!BpJ^m=G:gs+13$s+13hs8MBdeieN~> +!BU8[l%/kcs+13$s+13hs8M6`c8pI~> +!B:&Xj+75]s+13$s+13hs8M$Z_`*)~> +!BpJ^m=G:gs+13$s+13hs8MBdeieN~> +!BU8[l%/kcs+13$s+13hs8M6`c8pI~> +!B:&Xj+75]s+13$s+13hs8M$Z_`*)~> +!BpJ^m=G:gs+13$s+13hs8MBdeieN~> +!BU8[l%/kcs+13$s+13hs8M6`c8pI~> +!B:&Xj+75]s+13$s+13hs8M$Z_`*)~> +!BpJ^m=G:gs+13$s+13hs8MBdeieN~> +!BU8[l%/kcs+13$s+13hs8M6`c8pI~> +!B:&Xj+75]s+13$s+13hs8M$Z_`*)~> +!BpJ^m=G:gs+13$s+13hs8MBdeieN~> +!BU8[l%/kcs+13$s+13hs8M6`c8pI~> +!B:&Xj+75]s+13$s+13hs8M$Z_`*)~> +!BpJ^m=G:gs+13$s+13hs8MBdeieN~> +!BU8[l%/kcs+13$s+13hs8M6`c8pI~> +!B:&Xj+75]s+13$s+13hs8M$Z_`*)~> +!BpJ^m=G:gs+13$s+13hs8MBdeieN~> +!BU8[l%/kcs+13$s+13hs8M6`c8pI~> +!B:&Xj+75]s+13$s+13hs8M$Z_`*)~> +!BpJ^m=G:gs+13$s+13hs8MBdeieN~> +!BU8[l%/kcs+13$s+13hs8M6`c8pI~> +!B:&Xj+75]s+13$s+13hs8M$Z_`*)~> !BpI6m=FYUm=FYUmD&#heieN~> !BU73l%/)Ml%/)Ml+cH`c8pI~> !B:%0j+66Aj+66Aj1jUT_`*)~>