diff --git a/changelog b/changelog index 160ae63..c4acf60 100644 --- a/changelog +++ b/changelog @@ -1,3 +1,4 @@ +20081122 tpd src/axiom-website put website under change control 20081122 tpd zips/gcl-2.6.8pre3.unixport.makefile.patch added 20081122 tpd zips/gcl-2.6.8pre3.unixport.init_gcl.lsp.in.patch added 20081122 tpd zips/gcl-2.6.8pre3.cmpnew.gcl_cmpflet.lsp.patch added diff --git a/src/axiom-website/CATS/index.html b/src/axiom-website/CATS/index.html new file mode 100644 index 0000000..b74f1c8 --- /dev/null +++ b/src/axiom-website/CATS/index.html @@ -0,0 +1,128 @@ + +
++ Spiegel, Murray R. + Mathematical Handbook of Formulas and Tables + Schaum's Outline Series McGraw-Hill 1968 ++
+Each integral is computed by Axiom and compared against the +published result. +
+Each Axiom result is differenced from the published result +and reduced to a constant (usually 0). +
+
+
+ Schaums 14.59-14.83 
+ source
+ pdf @Phd1=sL值cBj
+ Schaums 14.84-14.104 
+ source
+ pdf
+ Schaums 14.104-14.112 
+ source
+ pdf
+ Schaums 14.113-.119 
+ source
+ pdf
+ Schaums 14.120-14.124 
+ source
+ pdf
+ Schaums 14.125-14.143 
+ source
+ pdf
+ Schaums 14.144-14.162 
+ source
+ pdf
+ Schaums 14.163-14.181 
+ source
+ pdf
+ Schaums 14.182-14.209 
+ source
+ pdf
+ Schaums 14.210-14.236 
+ source
+ pdf
+ Schaums 14.237-14.264 
+ source
+ pdf
+ Schaums 14.265-14.279 
+ source
+ pdf
+ Schaums 14.280-14.298 
+ source
+ pdf
+ Schaums 14.299-14.310 
+ source
+ pdf
+ Schaums 14.311-14.324 
+ source
+ pdf
+ Schaums 14.325-14.338 
+ source
+ pdf
+ Schaums 14.339-14.368 
+ source
+ pdf
+ Schaums 14.369-14.398 
+ source
+ pdf
+ Schaums 14.399-14.428 
+ source
+ pdf
+ Schaums 14.429-14.439 
+ source
+ pdf
+ Schaums 14.440-14.450 
+ source
+ pdf
+ Schaums 14.451-14.460 
+ source
+ pdf
+ Schaums 14.461-14.470 
+ source
+ pdf
+ Schaums 14.471-14.508 
+ source
+ pdf
+ Schaums 14.509-14.524 
+ source
+ pdf
+ Schaums 14.525-14.539 
+ source
+ pdf
+ Schaums 14.540-14.561 
+ source
+ pdf
+ Schaums 14.562-14.589 
+ source
+ pdf
+ Schaums 14.590-14.603 
+ source
+ pdf
+ Schaums 14.604-14.614 
+ source
+ pdf
+ Schaums 14.615-14.625 
+ source
+ pdf
+ Schaums 14.626-14.635 
+ source
+ pdf
+ Schaums 14.636-14.645 
+ source
+ pdf
+ Schaums 14.646-14.677 
+ source
+ pdf
+
+
\ No newline at end of file
diff --git a/src/axiom-website/CATS/schaum1.input.pamphlet b/src/axiom-website/CATS/schaum1.input.pamphlet
new file mode 100644
index 0000000..615d907
--- /dev/null
+++ b/src/axiom-website/CATS/schaum1.input.pamphlet
@@ -0,0 +1,1430 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/input schaum1.input}
+\author{Timothy Daly}
+\maketitle
+\eject
+\tableofcontents
+\eject
+\section{\cite{1}:14.59~~~~~$\displaystyle
+\int{\frac{dx}{ax+b}}$}
+$$\int{\frac{1}{ax+b}}=
+\frac{1}{a}~\ln(ax+b)
+$$
+<<*>>=
+)spool schaum1.output
+)set message test on
+)set message auto off
+)clear all
+
+--S 1
+aa:=integrate(1/(a*x+b),x)
+--R
+--R log(a x + b)
+--R (1) ------------
+--R a
+--R Type: Union(Expression Integer,...)
+--E 1
+
+--S 2
+bb:=1/a*log(a*x+b)
+--R
+--R log(a x + b)
+--R (2) ------------
+--R a
+--R Type: Expression Integer
+--E
+
+--S 3 14:59 Schaums and Axiom agree
+cc:=bb-aa
+--R
+--R (3) 0
+--R Type: Expression Integer
+--E
+@
+\section{\cite{1}:14.60~~~~~$\displaystyle
+\int{\frac{x~dx}{ax+b}}$}
+$$\int{\frac{x}{ax+b}}=
+\frac{x}{a}-\frac{b}{a^2}~\ln(ax+b)
+$$
+<<*>>=
+)clear all
+
+--S 4
+aa:=integrate(x/(a*x+b),x)
+--R
+--R
+--R - b log(a x + b) + a x
+--R (1) ----------------------
+--R 2
+--R a
+--R Type: Union(Expression Integer,...)
+--E
+
+--S 5
+bb:=x/a-b/a^2*log(a*x+b)
+--R
+--R - b log(a x + b) + a x
+--R (2) ----------------------
+--R 2
+--R a
+--R Type: Expression Integer
+--E
+
+--S 6 14:60 Schaums and Axiom agree
+cc:=bb-aa
+--R
+--R (3) 0
+--R Type: Expression Integer
+--E
+@
+
+\section{\cite{1}:14.61~~~~~$\displaystyle
+\int{\frac{x^2~dx}{ax+b}}$}
+$$\int{\frac{x^2}{ax+b}}=
+\frac{(ax+b)^2}{2a^3}-\frac{2b(ax+b)}{a^3}+\frac{b^2}{a^3}~\ln(ax+b)
+$$
+<<*>>=
+)clear all
+
+--S 7
+aa:=integrate(x^2/(a*x+b),x)
+--R
+--R 2 2 2
+--R 2b log(a x + b) + a x - 2a b x
+--R (1) -------------------------------
+--R 3
+--R 2a
+--R Type: Union(Expression Integer,...)
+--E
+
+--S 8
+bb:=(a*x+b)^2/(2*a^3)-(2*b*(a*x+b))/a^3+b^2/a^3*log(a*x+b)
+--R
+--R 2 2 2 2
+--R 2b log(a x + b) + a x - 2a b x - 3b
+--R (2) -------------------------------------
+--R 3
+--R 2a
+--R Type: Expression Integer
+--E
+
+--S 9
+cc:=bb-aa
+--R
+--R 2
+--R 3b
+--R (3) - ---
+--R 3
+--R 2a
+--R Type: Expression Integer
+--E
+@
+This factor is constant with respect to $x$ as shown by taking the
+derivative. It is a constant of integration.
+<<*>>=
+--S 10 14:61 Schaums and Axiom differ by a constant
+differentiate(cc,x)
+--R
+--R (4) 0
+--R Type: Expression Integer
+--E
+@
+\section{\cite{1}:14.62~~~~~$\displaystyle
+\int{\frac{x^3~dx}{ax+b}}$}
+$$\int{\frac{x^3}{ax+b}}=
+\frac{(ax+b)^3}{3a^4}-\frac{3b(ax+b)^2}{2a^4}+
+\frac{3b^2(ax+b)}{a^4}-\frac{b^3}{a^4}~\ln(ax+b)
+$$
+<<*>>=
+)clear all
+
+--S 11
+aa:=integrate(x^3/(a*x+b),x)
+--R
+--R 3 3 3 2 2 2
+--R - 6b log(a x + b) + 2a x - 3a b x + 6a b x
+--R (1) --------------------------------------------
+--R 4
+--R 6a
+--R Type: Union(Expression Integer,...)
+--E
+@
+and the book expression is:
+<<*>>=
+--S 12
+bb:=(a*x+b)^3/(3*a^4)-(3*b*(a*x+b)^2)/(2*a^4)+(3*b^2*(a*x+b))/a^4-(b^3/a^4)*log(a*x+b)
+--R
+--R 3 3 3 2 2 2 3
+--R - 6b log(a x + b) + 2a x - 3a b x + 6a b x + 11b
+--R (2) ---------------------------------------------------
+--R 4
+--R 6a
+--R Type: Expression Integer
+--E
+@
+
+The difference is a constant with respect to x:
+<<*>>=
+--S 13
+cc:=aa-bb
+--R
+--R 3
+--R 11b
+--R (3) - ----
+--R 4
+--R 6a
+--R Type: Expression Integer
+--E
+@
+
+If we differentiate each expression we see that this is the integration
+constant.
+<<*>>=
+--S 14 14:62 Schaums and Axiom differ by a constant
+dd:=D(cc,x)
+--R
+--R (4) 0
+--R Type: Expression Integer
+--E
+@
+
+\section{\cite{1}:14.63~~~~~$\displaystyle
+\int{\frac{dx}{x~(ax+b)}}$}
+$$\int{\frac{1}{x~(ax+b)}}=
+\frac{1}{b}~\ln\left(\frac{x}{ax+b}\right)
+$$
+<<*>>=
+)clear all
+
+--S 15
+aa:=integrate(1/(x*(a*x+b)),x)
+--R
+--R - log(a x + b) + log(x)
+--R (1) -----------------------
+--R b
+--R Type: Union(Expression Integer,...)
+--E
+
+--S 16
+bb:=1/b*log(x/(a*x+b))
+--R
+--R x
+--R log(-------)
+--R a x + b
+--R (2) ------------
+--R b
+--R Type: Expression Integer
+--E
+
+--S 17
+cc:=aa-bb
+--R
+--R x
+--R - log(a x + b) + log(x) - log(-------)
+--R a x + b
+--R (3) --------------------------------------
+--R b
+--R Type: Expression Integer
+--E
+@
+but we know that $$\log(a)-\log(b)=\log(\frac{a}{b})$$
+
+We can express this fact as a rule:
+<<*>>=
+--S 18
+logdiv:=rule(log(a)-log(b) == log(a/b))
+--R
+--R a
+--I (4) - log(b) + log(a) + %I == log(-) + %I
+--R b
+--R Type: RewriteRule(Integer,Integer,Expression Integer)
+--E
+@
+and use this rule to rewrite the logs into divisions:
+<<*>>=
+--S 19 14:63 Schaums and Axiom agree
+dd:=logdiv cc
+--R
+--R (5) 0
+--R Type: Expression Integer
+--E
+@
+so we can see the equivalence directly.
+
+\section{\cite{1}:14.64~~~~~$\displaystyle
+\int{\frac{dx}{x^2~(ax+b)}}$}
+$$\int{\frac{1}{x^2~(ax+b)}}=
+-\frac{1}{bx}+\frac{a}{b^2}~\ln\left(\frac{ax+b}{x}\right)
+$$
+<<*>>=
+)clear all
+
+--S 20
+aa:=integrate(1/(x^2*(a*x+b)),x)
+--R
+--R a x log(a x + b) - a x log(x) - b
+--R (1) ---------------------------------
+--R 2
+--R b x
+--R Type: Union(Expression Integer,...)
+--E
+@
+
+The original form given in the book expands to:
+<<*>>=
+--S 21
+bb:=-1/(b*x)+a/b^2*log((a*x+b)/x)
+--R
+--R a x + b
+--R a x log(-------) - b
+--R x
+--R (2) --------------------
+--R 2
+--R b x
+--R Type: Expression Integer
+--E
+
+--S 22
+cc:=aa-bb
+--R
+--R a x + b
+--R a log(a x + b) - a log(x) - a log(-------)
+--R x
+--R (3) ------------------------------------------
+--R 2
+--R b
+--R Type: Expression Integer
+--E
+@
+
+We can define the following rule to expand log forms:
+<<*>>=
+--S 23
+divlog:=rule(log(a/b) == log(a) - log(b))
+--R
+--R a
+--R (4) log(-) == - log(b) + log(a)
+--R b
+--R Type: RewriteRule(Integer,Integer,Expression Integer)
+--E
+@
+and apply it to the difference
+<<*>>=
+--S 24 14:64 Schaums and Axiom agree
+divlog cc
+--R
+--R (5) 0
+--R Type: Expression Integer
+--E
+@
+
+\section{\cite{1}:14.65~~~~~$\displaystyle
+\int{\frac{dx}{x^3~(ax+b)}}$}
+$$\int{\frac{1}{x^3~(ax+b)}}=
+\frac{2ax-b}{2b^2x^2}+\frac{a^2}{b^3}~\ln\left(\frac{x}{ax+b}\right)
+$$
+<<*>>=
+)clear all
+--S 25
+aa:=integrate(1/(x^3*(a*x+b)),x)
+--R
+--R 2 2 2 2 2
+--R - 2a x log(a x + b) + 2a x log(x) + 2a b x - b
+--R (1) -----------------------------------------------
+--R 3 2
+--R 2b x
+--R Type: Union(Expression Integer,...)
+--E
+
+--S 26
+bb:=(2*a*x-b)/(2*b^2*x^2)+a^2/b^3*log(x/(a*x+b))
+--R
+--R 2 2 x 2
+--R 2a x log(-------) + 2a b x - b
+--R a x + b
+--R (2) -------------------------------
+--R 3 2
+--R 2b x
+--R Type: Expression Integer
+--E
+
+--S 27
+cc:=aa-bb
+--R
+--R 2 2 2 x
+--R - a log(a x + b) + a log(x) - a log(-------)
+--R a x + b
+--R (3) --------------------------------------------
+--R 3
+--R b
+--R Type: Expression Integer
+--E
+
+--S 28
+divlog:=rule(log(a/b) == log(a) - log(b))
+--R
+--R a
+--R (4) log(-) == - log(b) + log(a)
+--R b
+--R Type: RewriteRule(Integer,Integer,Expression Integer)
+--E
+
+--S 29 14:65 Schaums and Axiom agree
+dd:=divlog cc
+--R
+--R (5) 0
+--R Type: Expression Integer
+--E
+@
+
+\section{\cite{1}:14.66~~~~~$\displaystyle
+\int{\frac{dx}{(ax+b)^2}}$}
+$$\int{\frac{1}{(ax+b)^2}}=
+\frac{-1}{a~(ax+b)}
+$$
+<<*>>=
+)clear all
+
+--S 30
+aa:=integrate(1/(a*x+b)^2,x)
+--R
+--R 1
+--R (1) - ---------
+--R 2
+--R a x + a b
+--R Type: Union(Expression Integer,...)
+--E
+
+--S 31
+bb:=-1/(a*(a*x+b))
+--R
+--R 1
+--R (2) - ---------
+--R 2
+--R a x + a b
+--R Type: Fraction Polynomial Integer
+--E
+
+--S 32 14:66 Schaums and Axiom agree
+cc:=aa-bb
+--R
+--R (3) 0
+--R Type: Expression Integer
+--E
+
+@
+
+\section{\cite{1}:14.67~~~~~$\displaystyle
+\int{\frac{x~dx}{(ax+b)^2}}$}
+$$\int{\frac{x}{(ax+b)^2}}=
+\frac{b}{a^2~(ax+b)}+\frac{1}{a^2}~\ln(ax+b)
+$$
+<<*>>=
+)clear all
+
+--S 33
+aa:=integrate(x/(a*x+b)^2,x)
+--R
+--R (a x + b)log(a x + b) + b
+--R (1) -------------------------
+--R 3 2
+--R a x + a b
+--R Type: Union(Expression Integer,...)
+--E
+
+--S 34
+bb:=b/(a^2*(a*x+b))+1/a^2*log(a*x+b)
+--R
+--R (a x + b)log(a x + b) + b
+--R (2) -------------------------
+--R 3 2
+--R a x + a b
+--R Type: Expression Integer
+--E
+
+--S 35 14:67 Schaums and Axiom agree
+cc:=aa-bb
+--R
+--R (3) 0
+--R Type: Expression Integer
+--E
+
+@
+
+\section{\cite{1}:14.68~~~~~$\displaystyle
+\int{\frac{x^2~dx}{(ax+b)^2}}$}
+$$\int{\frac{x^2}{(ax+b)^2}}=
+\frac{ax+b}{a^3}-\frac{b^2}{a^3~(ax+b)}
+-\frac{2b}{a^3}~\ln(ax+b)
+$$
+<<*>>=
+)clear all
+
+--S 36
+aa:=integrate(x^2/(a*x+b)^2,x)
+--R
+--R 2 2 2 2
+--R (- 2a b x - 2b )log(a x + b) + a x + a b x - b
+--R (1) ------------------------------------------------
+--R 4 3
+--R a x + a b
+--R Type: Union(Expression Integer,...)
+--E
+@
+and the book expression expands into
+<<*>>=
+--S 37
+bb:=(a*x+b)/a^3-b^2/(a^3*(a*x+b))-((2*b)/a^3)*log(a*x+b)
+--R
+--R 2 2 2
+--R (- 2a b x - 2b )log(a x + b) + a x + 2a b x
+--R (2) --------------------------------------------
+--R 4 3
+--R a x + a b
+--R Type: Expression Integer
+--E
+@
+
+These two expressions differ by the constant
+<<*>>=
+--S 38
+cc:=aa-bb
+--R
+--R b
+--R (3) - --
+--R 3
+--R a
+--R Type: Expression Integer
+--E
+@
+
+That this expression is constant can be shown by differentiation:
+<<*>>=
+--S 39 14:68 Schaums and Axiom differ by a constant
+D(cc,x)
+--R
+--R (4) 0
+--R Type: Expression Integer
+--E
+@
+
+\section{\cite{1}:14.69~~~~~$\displaystyle
+\int{\frac{x^3~dx}{(ax+b)^2}}$}
+$$\int{\frac{x^3}{(ax+b)^2}}=
+\frac{(ax+b)^2}{2a^4}-\frac{3b(ax+b)}{a^4}+\frac{b^3}{a^4(ax+b)}
++\frac{3b^2}{a^4}~\ln(ax+b)
+$$
+<<*>>=
+)clear all
+
+--S 40
+aa:=integrate(x^3/(a*x+b)^2,x)
+--R
+--R 2 3 3 3 2 2 2 3
+--R (6a b x + 6b )log(a x + b) + a x - 3a b x - 4a b x + 2b
+--R (1) ----------------------------------------------------------
+--R 5 4
+--R 2a x + 2a b
+--R Type: Union(Expression Integer,...)
+--E
+
+--S 41
+bb:=(a*x+b)^2/(2*a^4)-(3*b*(a*x+b))/a^4+b^3/(a^4*(a*x+b))+(3*b^2/a^4)*log(a*x+b)
+--R
+--R 2 3 3 3 2 2 2 3
+--R (6a b x + 6b )log(a x + b) + a x - 3a b x - 9a b x - 3b
+--R (2) ----------------------------------------------------------
+--R 5 4
+--R 2a x + 2a b
+--R Type: Expression Integer
+--E
+
+--S 42
+cc:=aa-bb
+--R
+--R 2
+--R 5b
+--R (3) ---
+--R 4
+--R 2a
+--R Type: Expression Integer
+--E
+
+--S 43 14:69 Schaums and Axiom differ by a constant
+dd:=D(cc,x)
+--R
+--R (4) 0
+--R Type: Expression Integer
+--E
+@
+\section{\cite{1}:14.70~~~~~$\displaystyle
+\int{\frac{dx}{x~(ax+b)^2}}$}
+$$\int{\frac{1}{x~(ax+b)^2}}=
+\frac{1}{b~(ax+b)}+\frac{1}{b^2}~\ln\left(\frac{x}{ax+b}\right)
+$$
+<<*>>=
+)clear all
+
+--S 44
+aa:=integrate(1/(x*(a*x+b)^2),x)
+--R
+--R (- a x - b)log(a x + b) + (a x + b)log(x) + b
+--R (1) ---------------------------------------------
+--R 2 3
+--R a b x + b
+--R Type: Union(Expression Integer,...)
+--E
+@
+and the book says:
+<<*>>=
+--S 45
+bb:=(1/(b*(a*x+b))+(1/b^2)*log(x/(a*x+b)))
+--R
+--R x
+--R (a x + b)log(-------) + b
+--R a x + b
+--R (2) -------------------------
+--R 2 3
+--R a b x + b
+--R Type: Expression Integer
+--E
+
+--S 46
+cc:=aa-bb
+--R
+--R x
+--R - log(a x + b) + log(x) - log(-------)
+--R a x + b
+--R (3) --------------------------------------
+--R 2
+--R b
+--R Type: Expression Integer
+--E
+@
+So we look at the divlog rule again:
+<<*>>=
+--S 47
+divlog:=rule(log(a/b) == log(a) - log(b))
+--R
+--R a
+--R (4) log(-) == - log(b) + log(a)
+--R b
+--R Type: RewriteRule(Integer,Integer,Expression Integer)
+--E
+@
+
+we apply it:
+<<*>>=
+--S 48 14:70 Schaums and Axiom agree
+dd:=divlog cc
+--R
+--R (5) 0
+--R Type: Expression Integer
+--E
+@
+
+\section{\cite{1}:14.71~~~~~$\displaystyle
+\int{\frac{dx}{x^2~(ax+b)^2}}$}
+$$\int{\frac{1}{x^2~(ax+b)^2}}=
+\frac{-a}{b^2~(ax+b)}-\frac{1}{b^2~x}+
+\frac{2a}{b^3}~\ln\left(\frac{ax+b}{x}\right)
+$$
+<<*>>=
+)clear all
+
+--S 49
+aa:=integrate(1/(x^2*(a*x+b)^2),x)
+--R
+--R 2 2 2 2 2
+--R (2a x + 2a b x)log(a x + b) + (- 2a x - 2a b x)log(x) - 2a b x - b
+--R (1) ---------------------------------------------------------------------
+--R 3 2 4
+--R a b x + b x
+--R Type: Union(Expression Integer,...)
+--E
+@
+and the book says:
+<<*>>=
+--S 50
+bb:=(-a/(b^2*(a*x+b)))-(1/(b^2*x))+((2*a)/b^3)*log((a*x+b)/x)
+--R
+--R 2 2 a x + b 2
+--R (2a x + 2a b x)log(-------) - 2a b x - b
+--R x
+--R (2) ------------------------------------------
+--R 3 2 4
+--R a b x + b x
+--R Type: Expression Integer
+--E
+
+--S 51
+cc:=aa-bb
+--R
+--R a x + b
+--R 2a log(a x + b) - 2a log(x) - 2a log(-------)
+--R x
+--R (3) ---------------------------------------------
+--R 3
+--R b
+--R Type: Expression Integer
+--E
+@
+which calls for our divlog rule:
+<<*>>=
+--S 52
+divlog:=rule(log(a/b) == log(a) - log(b))
+--R
+--R a
+--R (4) log(-) == - log(b) + log(a)
+--R b
+--R Type: RewriteRule(Integer,Integer,Expression Integer)
+--E
+@
+which we use to transform the result:
+<<*>>=
+--S 53 14:71 Schaums and Axiom agree
+dd:=divlog cc
+--R
+--R (5) 0
+--R Type: Expression Integer
+--E
+@
+\section{\cite{1}:14.72~~~~~$\displaystyle
+\int{\frac{dx}{x^3~(ax+b)^2}}$}
+$$\int{\frac{1}{x^3~(ax+b)^2}}=
+-\frac{(ax+b)^2}{2b^4x^2}+\frac{3a(ax+b)}{b^4x}-
+\frac{a^3x}{b^4(ax+b)}-\frac{3a^2}{b^4}~\ln\left(\frac{ax+b}{x}\right)
+$$
+<<*>>=
+)clear all
+
+--S 54
+aa:=integrate(1/(x^3*(a*x+b)^2),x)
+--R
+--R (1)
+--R 3 3 2 2 3 3 2 2 2 2
+--R (- 6a x - 6a b x )log(a x + b) + (6a x + 6a b x )log(x) + 6a b x
+--R +
+--R 2 3
+--R 3a b x - b
+--R /
+--R 4 3 5 2
+--R 2a b x + 2b x
+--R Type: Union(Expression Integer,...)
+--E
+
+--S 55
+bb:=-(a*x+b)^2/(2*b^4*x^2)+(3*a*(a*x+b))/(b^4*x)-(a^3*x)/(b^4*(a*x+b))-((3*a^2)/b^4)*log((a*x+b)/x)
+--R
+--R 3 3 2 2 a x + b 3 3 2 2 2 3
+--R (- 6a x - 6a b x )log(-------) + 3a x + 9a b x + 3a b x - b
+--R x
+--R (2) ---------------------------------------------------------------
+--R 4 3 5 2
+--R 2a b x + 2b x
+--R Type: Expression Integer
+--E
+
+--S 56
+cc:=aa-bb
+--R
+--R 2 2 2 a x + b 2
+--R - 6a log(a x + b) + 6a log(x) + 6a log(-------) - 3a
+--R x
+--R (3) -----------------------------------------------------
+--R 4
+--R 2b
+--R Type: Expression Integer
+--E
+
+--S 57
+divlog:=rule(log(a/b) == log(a) - log(b))
+--R
+--R a
+--R (4) log(-) == - log(b) + log(a)
+--R b
+--R Type: RewriteRule(Integer,Integer,Expression Integer)
+--E
+
+--S 58
+dd:=divlog cc
+--R
+--R 2
+--R 3a
+--R (5) - ---
+--R 4
+--R 2b
+--R Type: Expression Integer
+--E
+
+--S 59 14:72 Schaums and Axiom differ by a constant
+ee:=D(dd,x)
+--R
+--R (6) 0
+--R Type: Expression Integer
+--E
+@
+
+\section{\cite{1}:14.73~~~~~$\displaystyle
+\int{\frac{dx}{(ax+b)^3}}$}
+$$\int{\frac{1}{(ax+b)^3}}=
+\frac{-1}{2a(ax+b)^2}
+$$
+<<*>>=
+)clear all
+
+--S 60
+aa:=integrate(1/(a*x+b)^3,x)
+--R
+--R 1
+--R (1) - ----------------------
+--R 3 2 2 2
+--R 2a x + 4a b x + 2a b
+--R Type: Union(Expression Integer,...)
+--E
+
+--S 61
+bb:=-1/(2*(a*x+b)^2)
+--R
+--R 1
+--R (2) - --------------------
+--R 2 2 2
+--R 2a x + 4a b x + 2b
+--R Type: Fraction Polynomial Integer
+--E
+
+--S 62
+cc:=aa-bb
+--R
+--R a - 1
+--R (3) ----------------------
+--R 3 2 2 2
+--R 2a x + 4a b x + 2a b
+--R Type: Expression Integer
+--E
+
+--S 63
+dd:=aa/bb
+--R
+--R 1
+--R (4) -
+--R a
+--R Type: Expression Integer
+--E
+
+--S 64 14:73 Schaums and Axiom differ by a constant
+ee:=D(dd,x)
+--R
+--R (5) 0
+--R Type: Expression Integer
+--E
+@
+
+\section{\cite{1}:14.74~~~~~$\displaystyle
+\int{\frac{x~dx}{(ax+b)^3}}$}
+$$\int{\frac{x}{(ax+b)^3}}=
+\frac{-1}{a^2(ax+b)}+\frac{b}{2a^2(ax+b)^2}
+$$
+<<*>>=
+)clear all
+
+--S 65
+aa:=integrate(x/(a*x+b)^3,x)
+--R
+--R - 2a x - b
+--R (1) ----------------------
+--R 4 2 3 2 2
+--R 2a x + 4a b x + 2a b
+--R Type: Union(Expression Integer,...)
+--E
+
+--S 66
+bb:=-1/(a^2*(a*x+b))+b/(2*a^2*(a*x+b)^2)
+--R
+--R - 2a x - b
+--R (2) ----------------------
+--R 4 2 3 2 2
+--R 2a x + 4a b x + 2a b
+--R Type: Fraction Polynomial Integer
+--E
+
+--S 67 14:74 Schaums and Axiom agree
+cc:=aa-bb
+--R
+--R (3) 0
+--R Type: Expression Integer
+--E
+@
+
+\section{\cite{1}:14.75~~~~~$\displaystyle
+\int{\frac{x^2~dx}{(ax+b)^3}}$}
+$$\int{\frac{x^2}{(ax+b)^3}}=
+\frac{2b}{a^3(ax+b)}-\frac{b^2}{2a^3(ax+b)^2}+
+\frac{1}{a^3}~\ln(ax+b)
+$$
+<<*>>=
+)clear all
+
+--S 68
+aa:=integrate(x^2/(a*x+b)^3,x)
+--R
+--R 2 2 2 2
+--R (2a x + 4a b x + 2b )log(a x + b) + 4a b x + 3b
+--R (1) -------------------------------------------------
+--R 5 2 4 3 2
+--R 2a x + 4a b x + 2a b
+--R Type: Union(Expression Integer,...)
+--E
+
+--S 69
+bb:=(2*b)/(a^3*(a*x+b))-(b^2)/(2*a^3*(a*x+b)^2)+1/a^3*log(a*x+b)
+--R
+--R 2 2 2 2
+--R (2a x + 4a b x + 2b )log(a x + b) + 4a b x + 3b
+--R (2) -------------------------------------------------
+--R 5 2 4 3 2
+--R 2a x + 4a b x + 2a b
+--R Type: Expression Integer
+--E
+
+--S 70 14:75 Schaums and Axiom agree
+cc:=aa-bb
+--R
+--R (3) 0
+--R Type: Expression Integer
+--E
+@
+
+\section{\cite{1}:14.76~~~~~$\displaystyle
+\int{\frac{x^3~dx}{(ax+b)^3}}$}
+$$\int{\frac{x^3}{(ax+b)^3}}=
+\frac{x}{a^3}-\frac{3b^2}{a^4(ax+b)}+\frac{b^3}{2a^4(ax+b)^2}-
+\frac{3b}{a^4}~\ln(ax+b)
+$$
+<<*>>=
+)clear all
+--S 71
+aa:=integrate(x^3/(a*x+b)^3,x)
+--R
+--R (1)
+--R 2 2 2 3 3 3 2 2 2 3
+--R (- 6a b x - 12a b x - 6b )log(a x + b) + 2a x + 4a b x - 4a b x - 5b
+--R ------------------------------------------------------------------------
+--R 6 2 5 4 2
+--R 2a x + 4a b x + 2a b
+--R Type: Union(Expression Integer,...)
+--E
+
+--S 72
+bb:=(x/a^3)-(3*b^2)/(a^4*(a*x+b))+b^3/(2*a^4*(a*x+b)^2)-(3*b)/a^4*log(a*x+b)
+--R
+--R (2)
+--R 2 2 2 3 3 3 2 2 2 3
+--R (- 6a b x - 12a b x - 6b )log(a x + b) + 2a x + 4a b x - 4a b x - 5b
+--R ------------------------------------------------------------------------
+--R 6 2 5 4 2
+--R 2a x + 4a b x + 2a b
+--R Type: Expression Integer
+--E
+
+--S 73 14:76 Schaums and Axiom agree
+cc:=aa-bb
+--R
+--R (3) 0
+--R Type: Expression Integer
+--E
+@
+
+\section{\cite{1}:14.77~~~~~$\displaystyle
+\int{\frac{dx}{x(ax+b)^3}}$}
+$$\int{\frac{1}{x(ax+b)^3}}=
+\frac{3}{2b(ax+b)^2}+\frac{2ax}{2b^2(ax+b)^2}-
+\frac{1}{b^3}*\ln\left(\frac{ax+b}{x}\right)
+$$
+
+<<*>>=
+)clear all
+
+--S 74
+aa:=integrate(1/(x*(a*x+b)^3),x)
+--R
+--R (1)
+--R 2 2 2 2 2 2
+--R (- 2a x - 4a b x - 2b )log(a x + b) + (2a x + 4a b x + 2b )log(x)
+--R +
+--R 2
+--R 2a b x + 3b
+--R /
+--R 2 3 2 4 5
+--R 2a b x + 4a b x + 2b
+--R Type: Union(Expression Integer,...)
+--E
+
+--S 75
+bb:=(a^2*x^2)/(2*b^3*(a*x+b)^2)-(2*a*x)/(b^3*(a*x+b))-(1/b^3)*log((a*x+b)/x)
+--R
+--R 2 2 2 a x + b 2 2
+--R (- 2a x - 4a b x - 2b )log(-------) - 3a x - 4a b x
+--R x
+--R (2) -----------------------------------------------------
+--R 2 3 2 4 5
+--R 2a b x + 4a b x + 2b
+--R Type: Expression Integer
+--E
+
+--S 76
+cc:=aa-bb
+--R
+--R a x + b
+--R - 2log(a x + b) + 2log(x) + 2log(-------) + 3
+--R x
+--R (3) ---------------------------------------------
+--R 3
+--R 2b
+--R Type: Expression Integer
+--E
+
+--S 77
+divlog:=rule(log(a/b) == log(a) - log(b))
+--R
+--R a
+--R (4) log(-) == - log(b) + log(a)
+--R b
+--R Type: RewriteRule(Integer,Integer,Expression Integer)
+--E
+
+--S 78
+dd:=divlog cc
+--R
+--R 3
+--R (5) ---
+--R 3
+--R 2b
+--R Type: Expression Integer
+--E
+
+--S 79 14:77 Schaums and Axiom differ by a constant
+ee:=D(dd,x)
+--R
+--R (6) 0
+--R Type: Expression Integer
+--E
+@
+
+\section{\cite{1}:14.78~~~~~$\displaystyle
+\int{\frac{dx}{x^2(ax+b)^3}}$}
+$$\int{\frac{1}{x^2(ax+b)^3}}=
+\frac{-a}{2b^2(ax+b)^2}-\frac{2a}{b^3(ax+b)}-
+\frac{1}{b^3x}+\frac{3a}{b^4}~\ln\left(\frac{ax+b}{x}\right)
+$$
+<<*>>=
+)clear all
+
+--S 80
+aa:=integrate(1/(x^2*(a*x+b)^3),x)
+--R
+--R (1)
+--R 3 3 2 2 2
+--R (6a x + 12a b x + 6a b x)log(a x + b)
+--R +
+--R 3 3 2 2 2 2 2 2 3
+--R (- 6a x - 12a b x - 6a b x)log(x) - 6a b x - 9a b x - 2b
+--R /
+--R 2 4 3 5 2 6
+--R 2a b x + 4a b x + 2b x
+--R Type: Union(Expression Integer,...)
+--E
+
+--S 81
+bb:=-a/(2*b^2*(a*x+b)^2)-(2*a)/(b^3*(a*x+b))-1/(b^3*x)+((3*a)/b^4)*log((a*x+b)/x)
+--R
+--R 3 3 2 2 2 a x + b 2 2 2 3
+--R (6a x + 12a b x + 6a b x)log(-------) - 6a b x - 9a b x - 2b
+--R x
+--R (2) ----------------------------------------------------------------
+--R 2 4 3 5 2 6
+--R 2a b x + 4a b x + 2b x
+--R Type: Expression Integer
+--E
+
+--S 82
+cc:=aa-bb
+--R
+--R a x + b
+--R 3a log(a x + b) - 3a log(x) - 3a log(-------)
+--R x
+--R (3) ---------------------------------------------
+--R 4
+--R b
+--R Type: Expression Integer
+--E
+
+--S 83
+divlog:=rule(log(a/b) == log(a) - log(b))
+--R
+--R a
+--R (4) log(-) == - log(b) + log(a)
+--R b
+--R Type: RewriteRule(Integer,Integer,Expression Integer)
+--E
+
+--S 84 14:78 Schaums and Axiom agree
+dd:=divlog cc
+--R
+--R (5) 0
+--R Type: Expression Integer
+--E
+@
+
+\section{\cite{1}:14.79~~~~~$\displaystyle
+\int{\frac{dx}{x^3(ax+b)^3}}$}
+$$\int{\frac{1}{x^3(ax+b)^3}}=
+-\frac{1}{2bx^2(ax+b)^2}+
+\frac{2a}{b^2x(ax+b)^2}+
+\frac{9a^2}{b^3(ax+b)^2}+
+\frac{6a^3x}{b^4(ax+b)^2}-
+\frac{6a^2}{b^5}~\ln\left(\frac{ax+b}{x}\right)$$
+
+<<*>>=
+)clear all
+
+--S 85
+aa:=integrate(1/(x^3*(a*x+b)^3),x)
+--R
+--R (1)
+--R 4 4 3 3 2 2 2
+--R (- 12a x - 24a b x - 12a b x )log(a x + b)
+--R +
+--R 4 4 3 3 2 2 2 3 3 2 2 2 3 4
+--R (12a x + 24a b x + 12a b x )log(x) + 12a b x + 18a b x + 4a b x - b
+--R /
+--R 2 5 4 6 3 7 2
+--R 2a b x + 4a b x + 2b x
+--R Type: Union(Expression Integer,...)
+--E
+
+--S 86
+bb:=-1/(2*b*x^2*(a*x+b)^2)_
+ +(2*a)/(b^2*x*(a*x+b)^2)_
+ +(9*a^2)/(b^3*(a*x+b)^2)_
+ +(6*a^3*x)/(b^4*(a*x+b)^2)_
+ +(-6*a^2)/b^5*log((a*x+b)/x)
+--R
+--R (2)
+--R 4 4 3 3 2 2 2 a x + b 3 3 2 2 2
+--R (- 12a x - 24a b x - 12a b x )log(-------) + 12a b x + 18a b x
+--R x
+--R +
+--R 3 4
+--R 4a b x - b
+--R /
+--R 2 5 4 6 3 7 2
+--R 2a b x + 4a b x + 2b x
+--R Type: Expression Integer
+--E
+
+--S 87
+cc:=aa-bb
+--R
+--R 2 2 2 a x + b
+--R - 6a log(a x + b) + 6a log(x) + 6a log(-------)
+--R x
+--R (3) -----------------------------------------------
+--R 5
+--R b
+--R Type: Expression Integer
+--E
+
+--S 88
+divlog:=rule(log(a/b) == log(a) - log(b))
+--R
+--R a
+--R (4) log(-) == - log(b) + log(a)
+--R b
+--R Type: RewriteRule(Integer,Integer,Expression Integer)
+--E
+
+--S 89 14:79 Schaums and Axiom agree
+dd:=divlog cc
+--R
+--R (5) 0
+--R Type: Expression Integer
+--E
+@
+
+\section{\cite{1}:14.80~~~~~$\displaystyle
+\int{(ax+b)^n~dx}$}
+$$\int{(ax+b)^n}=
+\frac{(ax+b)^{n+1}}{(n+1)a}{\rm\ provided\ }n \ne -1
+$$
+<<*>>=
+)clear all
+--S 90
+aa:=integrate((a*x+b)^n,x)
+--R
+--R n log(a x + b)
+--R (a x + b)%e
+--R (1) -------------------------
+--R a n + a
+--R Type: Union(Expression Integer,...)
+--E
+
+--S 91
+bb:=(a*x+b)^(n+1)/((n+1)*a)
+--R
+--R n + 1
+--R (a x + b)
+--R (2) --------------
+--R a n + a
+--R Type: Expression Integer
+--E
+
+--S 92
+cc:=aa-bb
+--R
+--R n log(a x + b) n + 1
+--R (a x + b)%e - (a x + b)
+--R (3) ------------------------------------------
+--R a n + a
+--R Type: Expression Integer
+--E
+@
+This messy formula can be simplified using the explog rule:
+<<*>>=
+--S 93
+explog:=rule(%e^(n*log(x)) == x^n)
+--R
+--R n log(x) n
+--R (4) %e == x
+--R Type: RewriteRule(Integer,Integer,Expression Integer)
+--E
+
+--S 94
+dd:=explog cc
+--R
+--R n + 1 n
+--R - (a x + b) + (a x + b)(a x + b)
+--R (5) --------------------------------------
+--R a n + a
+--R Type: Expression Integer
+--E
+
+--S 95 14:80 Schaums and Axiom agree
+ee:=complexNormalize dd
+--R
+--R (6) 0
+--R Type: Expression Integer
+--E
+@
+
+\section{\cite{1}:14.81~~~~~$\displaystyle
+\int{x(ax+b)^n~dx}$}
+$$\int{x(ax+b)^n}=
+\frac{(ax+b)^{n+2}}{(n+2)a^2}-\frac{b(ax+b)^{n+1}}{(n+1)a^2}
+{\rm\ provided\ }n \ne -1,-2
+$$
+<<*>>=
+)clear all
+--S 96
+aa:=integrate(x*(a*x+b)^n,x)
+--R
+--R 2 2 2 2 n log(a x + b)
+--R ((a n + a )x + a b n x - b )%e
+--R (1) ---------------------------------------------
+--R 2 2 2 2
+--R a n + 3a n + 2a
+--R Type: Union(Expression Integer,...)
+--E
+
+--S 97
+bb:=((a*x+b)^(n+2))/((n+2)*a^2)-(b*(a*x+b)^(n+1))/((n+1)*a^2)
+--R
+--R n + 2 n + 1
+--R (n + 1)(a x + b) + (- b n - 2b)(a x + b)
+--R (2) --------------------------------------------------
+--R 2 2 2 2
+--R a n + 3a n + 2a
+--R Type: Expression Integer
+--E
+
+--S 98
+cc:=aa-bb
+--R
+--R (3)
+--R 2 2 2 2 n log(a x + b) n + 2
+--R ((a n + a )x + a b n x - b )%e + (- n - 1)(a x + b)
+--R +
+--R n + 1
+--R (b n + 2b)(a x + b)
+--R /
+--R 2 2 2 2
+--R a n + 3a n + 2a
+--R Type: Expression Integer
+--E
+
+--S 99
+explog:=rule(%e^(n*log(x)) == x^n)
+--R
+--R n log(x) n
+--R (4) %e == x
+--R Type: RewriteRule(Integer,Integer,Expression Integer)
+--E
+
+--S 100
+dd:=explog cc
+--R
+--R (5)
+--R n + 2 n + 1
+--R (- n - 1)(a x + b) + (b n + 2b)(a x + b)
+--R +
+--R 2 2 2 2 n
+--R ((a n + a )x + a b n x - b )(a x + b)
+--R /
+--R 2 2 2 2
+--R a n + 3a n + 2a
+--R Type: Expression Integer
+--E
+
+--S 101
+ee:=complexNormalize dd
+--R
+--R (6) 0
+--R Type: Expression Integer
+--E
+@
+\section{\cite{1}:14.82~~~~~$\displaystyle
+\int{x^2(ax+b)^n~dx}$}
+$$\int{x^2(ax+b)^n}=
+\frac{(ax+b)^{n+2}}{(n+3)a^3}-
+\frac{2b(ax+b)^{n+2}}{(n+2)a^3}+
+\frac{b^2(ax+b)^{n+1}}{(n+1)a^3}
+{\rm\ provided\ }n \ne -1,-2,-3
+$$
+
+<<*>>=
+)clear all
+--S 102
+aa:=integrate(x^2*(a*x+b)^n,x)
+--R
+--R (1)
+--R 3 2 3 3 3 2 2 2 2 2 3 n log(a x + b)
+--R ((a n + 3a n + 2a )x + (a b n + a b n)x - 2a b n x + 2b )%e
+--R -----------------------------------------------------------------------------
+--R 3 3 3 2 3 3
+--R a n + 6a n + 11a n + 6a
+--R Type: Union(Expression Integer,...)
+--E
+
+--S 103
+bb:=(a*x+b)^(n+3)/((n+3)*a^3)-(2*b*(a*x+b)^(n+2))/((n+2)*a^3)+(b^2*(a*x+b)^(n+1))/((n+1)*a^3)
+--R
+--R (2)
+--R 2 n + 3 2 n + 2
+--R (n + 3n + 2)(a x + b) + (- 2b n - 8b n - 6b)(a x + b)
+--R +
+--R 2 2 2 2 n + 1
+--R (b n + 5b n + 6b )(a x + b)
+--R /
+--R 3 3 3 2 3 3
+--R a n + 6a n + 11a n + 6a
+--R Type: Expression Integer
+--E
+
+--S 104
+cc:=aa-bb
+--R
+--R (3)
+--R 3 2 3 3 3 2 2 2 2 2 3
+--R ((a n + 3a n + 2a )x + (a b n + a b n)x - 2a b n x + 2b )
+--R *
+--R n log(a x + b)
+--R %e
+--R +
+--R 2 n + 3 2 n + 2
+--R (- n - 3n - 2)(a x + b) + (2b n + 8b n + 6b)(a x + b)
+--R +
+--R 2 2 2 2 n + 1
+--R (- b n - 5b n - 6b )(a x + b)
+--R /
+--R 3 3 3 2 3 3
+--R a n + 6a n + 11a n + 6a
+--R Type: Expression Integer
+--E
+
+--S 105
+explog:=rule(%e^(n*log(x)) == x^n)
+--R
+--R n log(x) n
+--R (4) %e == x
+--R Type: RewriteRule(Integer,Integer,Expression Integer)
+--E
+
+--S 106
+dd:=explog cc
+--R
+--R (5)
+--R 2 n + 3 2 n + 2
+--R (- n - 3n - 2)(a x + b) + (2b n + 8b n + 6b)(a x + b)
+--R +
+--R 2 2 2 2 n + 1
+--R (- b n - 5b n - 6b )(a x + b)
+--R +
+--R 3 2 3 3 3 2 2 2 2 2 3 n
+--R ((a n + 3a n + 2a )x + (a b n + a b n)x - 2a b n x + 2b )(a x + b)
+--R /
+--R 3 3 3 2 3 3
+--R a n + 6a n + 11a n + 6a
+--R Type: Expression Integer
+--E
+
+--S 107 14:82 Schaums and Axiom agree
+ee:=complexNormalize dd
+--R
+--R (6) 0
+--R Type: Expression Integer
+--E
+@
+\section{\cite{1}:14.83~~~~~$\displaystyle
+\int{x^m(ax+b)^n}~dx$}
+$$\int{x^m(ax+b)^n}
+\left\{
+\begin{array}{l}
+\displaystyle
+\frac{x^{m+1}(ax+b)^n}{m+n+1}
++\frac{nb}{m+n+1}\int{x^m(ax+b)^{n-1}}\\
+\\
+\displaystyle
+\frac{x^{m+1}(ax+b)^{n+1}}{(m+n+1)a}
+-\frac{mb}{(m+n+1)a}\int{x^{m-1}(ax+b)^n}\\
+\\
+\displaystyle
+\frac{-x^{m+1}(ax+b)^{n+1}}{(n+1)b}
++\frac{m+n+2}{(n+1)b}\int{x^m(ax+b)^{n+1}}\\
+\end{array}
+\right.
+$$
+
+<<*>>=
+--S 108 14:83 Axiom cannot do this integration
+aa:=integrate(x^m*(a*x+b)^n,x)
+--R
+--R x
+--R ++ m n
+--I (1) | %U (b + %U a) d%U
+--R ++
+--R Type: Union(Expression Integer,...)
+--E
+
+)spool
+)lisp (bye)
+@
+
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} Spiegel, Murray R.
+{\sl Mathematical Handbook of Formulas and Tables}\\
+Schaum's Outline Series McGraw-Hill 1968 pp60-61
+\end{thebibliography}
+\end{document}
diff --git a/src/axiom-website/CATS/schaum1.input.pdf b/src/axiom-website/CATS/schaum1.input.pdf
new file mode 100644
index 0000000..1c316b5
--- /dev/null
+++ b/src/axiom-website/CATS/schaum1.input.pdf
@@ -0,0 +1,3029 @@
+%PDF-1.2
+7 0 obj
+<<
+/Type/Encoding
+/Differences[0/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress
+160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis]
+>>
+endobj
+10 0 obj
+<<
+/Encoding 7 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F1
+/FontDescriptor 9 0 R
+/BaseFont/FPGSSG+CMR17
+/FirstChar 33
+/LastChar 196
+/Widths[249.6 458.6 772.1 458.6 772.1 719.8 249.6 354.1 354.1 458.6 719.8 249.6 301.9
+249.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 249.6 249.6
+249.6 719.8 432.5 432.5 719.8 693.3 654.3 667.6 706.6 628.2 602.1 726.3 693.3 327.6
+471.5 719.4 576 850 693.3 719.8 628.2 719.8 680.5 510.9 667.6 693.3 693.3 954.5 693.3
+693.3 563.1 249.6 458.6 249.6 458.6 249.6 249.6 458.6 510.9 406.4 510.9 406.4 275.8
+458.6 510.9 249.6 275.8 484.7 249.6 772.1 510.9 458.6 510.9 484.7 354.1 359.4 354.1
+510.9 484.7 667.6 484.7 484.7 406.4 458.6 917.2 458.6 458.6 458.6 0 0 0 0 0 0 0 0
+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 576 772.1 719.8 641.1 615.3 693.3
+667.6 719.8 667.6 719.8 0 0 667.6 525.4 499.3 499.3 748.9 748.9 249.6 275.8 458.6
+458.6 458.6 458.6 458.6 693.3 406.4 458.6 667.6 719.8 458.6 837.2 941.7 719.8 249.6
+458.6]
+>>
+endobj
+13 0 obj
+<<
+/Encoding 7 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F2
+/FontDescriptor 12 0 R
+/BaseFont/ZTNFWY+CMR12
+/FirstChar 33
+/LastChar 196
+/Widths[272 489.6 816 489.6 816 761.6 272 380.8 380.8 489.6 761.6 272 326.4 272 489.6
+489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 272 761.6 462.4
+462.4 761.6 734 693.4 707.2 747.8 666.2 639 768.3 734 353.2 503 761.2 611.8 897.2
+734 761.6 666.2 761.6 720.6 544 707.2 734 734 1006 734 734 598.4 272 489.6 272 489.6
+272 272 489.6 544 435.2 544 435.2 299.2 489.6 544 272 299.2 516.8 272 816 544 489.6
+544 516.8 380.8 386.2 380.8 544 516.8 707.2 516.8 516.8 435.2 489.6 979.2 489.6 489.6
+489.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 611.8 816
+761.6 679.6 652.8 734 707.2 761.6 707.2 761.6 0 0 707.2 571.2 544 544 816 816 272
+299.2 489.6 489.6 489.6 489.6 489.6 734 435.2 489.6 707.2 761.6 489.6 883.8 992.6
+761.6 272 489.6]
+>>
+endobj
+16 0 obj
+<<
+/Encoding 7 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F3
+/FontDescriptor 15 0 R
+/BaseFont/KHZWRY+CMR10
+/FirstChar 33
+/LastChar 196
+/Widths[277.8 500 833.3 500 833.3 777.8 277.8 388.9 388.9 500 777.8 277.8 333.3 277.8
+500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 277.8 777.8 472.2 472.2 777.8
+750 708.3 722.2 763.9 680.6 652.8 784.7 750 361.1 513.9 777.8 625 916.7 750 777.8
+680.6 777.8 736.1 555.6 722.2 750 750 1027.8 750 750 611.1 277.8 500 277.8 500 277.8
+277.8 500 555.6 444.4 555.6 444.4 305.6 500 555.6 277.8 305.6 527.8 277.8 833.3 555.6
+500 555.6 527.8 391.7 394.4 388.9 555.6 527.8 722.2 527.8 527.8 444.4 500 1000 500
+500 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 625 833.3
+777.8 694.4 666.7 750 722.2 777.8 722.2 777.8 0 0 722.2 583.3 555.6 555.6 833.3 833.3
+277.8 305.6 500 500 500 500 500 750 444.4 500 722.2 777.8 500 902.8 1013.9 777.8
+277.8 500]
+>>
+endobj
+18 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 179
+>>
+stream
+x%@wÑHwĄی1*$&Ԧ/h^ >) "'ԁ/j{9G֩}wX4=T5盯t1e!oDl4;fӂͯb
+jK$Sօvk@y4㌙̢Q46
+endstream
+endobj
+20 0 obj
+<<
+/F1 10 0 R
+/F2 13 0 R
+/F3 16 0 R
+>>
+endobj
+6 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 20 0 R
+>>
+endobj
+25 0 obj
+<<
+/Encoding 7 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F4
+/FontDescriptor 24 0 R
+/BaseFont/DKLHRG+CMBX12
+/FirstChar 33
+/LastChar 196
+/Widths[342.6 581 937.5 562.5 937.5 875 312.5 437.5 437.5 562.5 875 312.5 375 312.5
+562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 312.5 312.5 342.6
+875 531.2 531.2 875 849.5 799.8 812.5 862.3 738.4 707.2 884.3 879.6 419 581 880.8
+675.9 1067.1 879.6 844.9 768.5 844.9 839.1 625 782.4 864.6 849.5 1162 849.5 849.5
+687.5 312.5 581 312.5 562.5 312.5 312.5 546.9 625 500 625 513.3 343.7 562.5 625 312.5
+343.7 593.7 312.5 937.5 625 562.5 625 593.7 459.5 443.8 437.5 625 593.7 812.5 593.7
+593.7 500 562.5 1125 562.5 562.5 562.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+0 0 0 0 0 0 0 0 0 0 0 0 675.9 937.5 875 787 750 879.6 812.5 875 812.5 875 0 0 812.5
+656.2 625 625 937.5 937.5 312.5 343.7 562.5 562.5 562.5 562.5 562.5 849.5 500 574.1
+812.5 875 562.5 1018.5 1143.5 875 312.5 562.5]
+>>
+endobj
+28 0 obj
+<<
+/Encoding 7 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F5
+/FontDescriptor 27 0 R
+/BaseFont/OOVPHA+CMBX10
+/FirstChar 33
+/LastChar 196
+/Widths[350 602.8 958.3 575 958.3 894.4 319.4 447.2 447.2 575 894.4 319.4 383.3 319.4
+575 575 575 575 575 575 575 575 575 575 575 319.4 319.4 350 894.4 543.1 543.1 894.4
+869.4 818.1 830.6 881.9 755.6 723.6 904.2 900 436.1 594.4 901.4 691.7 1091.7 900
+863.9 786.1 863.9 862.5 638.9 800 884.7 869.4 1188.9 869.4 869.4 702.8 319.4 602.8
+319.4 575 319.4 319.4 559 638.9 511.1 638.9 527.1 351.4 575 638.9 319.4 351.4 606.9
+319.4 958.3 638.9 575 638.9 606.9 473.6 453.6 447.2 638.9 606.9 830.6 606.9 606.9
+511.1 575 1150 575 575 575 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+0 0 0 0 0 0 691.7 958.3 894.4 805.6 766.7 900 830.6 894.4 830.6 894.4 0 0 830.6 670.8
+638.9 638.9 958.3 958.3 319.4 351.4 575 575 575 575 575 869.4 511.1 597.2 830.6 894.4
+575 1041.7 1169.4 894.4 319.4 575]
+>>
+endobj
+31 0 obj
+<<
+/Type/Font
+/Subtype/Type1
+/Name/F6
+/FontDescriptor 30 0 R
+/BaseFont/IORQIL+CMEX10
+/FirstChar 33
+/LastChar 196
+/Widths[791.7 583.3 583.3 638.9 638.9 638.9 638.9 805.6 805.6 805.6 805.6 1277.8
+1277.8 811.1 811.1 875 875 666.7 666.7 666.7 666.7 666.7 666.7 888.9 888.9 888.9
+888.9 888.9 888.9 888.9 666.7 875 875 875 875 611.1 611.1 833.3 1111.1 472.2 555.6
+1111.1 1511.1 1111.1 1511.1 1111.1 1511.1 1055.6 944.4 472.2 833.3 833.3 833.3 833.3
+833.3 1444.4 1277.8 555.6 1111.1 1111.1 1111.1 1111.1 1111.1 944.4 1277.8 555.6 1000
+1444.4 555.6 1000 1444.4 472.2 472.2 527.8 527.8 527.8 527.8 666.7 666.7 1000 1000
+1000 1000 1055.6 1055.6 1055.6 777.8 666.7 666.7 450 450 450 450 777.8 777.8 0 0
+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 458.3 458.3 416.7 416.7
+472.2 472.2 472.2 472.2 583.3 583.3 0 0 472.2 472.2 333.3 555.6 577.8 577.8 597.2
+597.2 736.1 736.1 527.8 527.8 583.3 583.3 583.3 583.3 750 750 750 750 1044.4 1044.4
+791.7 777.8]
+>>
+endobj
+32 0 obj
+<<
+/Type/Encoding
+/Differences[0/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/alpha/beta/gamma/delta/epsilon1/zeta/eta/theta/iota/kappa/lambda/mu/nu/xi/pi/rho/sigma/tau/upsilon/phi/chi/psi/omega/epsilon/theta1/pi1/rho1/sigma1/phi1/arrowlefttophalf/arrowleftbothalf/arrowrighttophalf/arrowrightbothalf/arrowhookleft/arrowhookright/triangleright/triangleleft/zerooldstyle/oneoldstyle/twooldstyle/threeoldstyle/fouroldstyle/fiveoldstyle/sixoldstyle/sevenoldstyle/eightoldstyle/nineoldstyle/period/comma/less/slash/greater/star/partialdiff/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/flat/natural/sharp/slurbelow/slurabove/lscript/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/dotlessi/dotlessj/weierstrass/vector/tie/psi
+160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 173/Omega/alpha/beta/gamma/delta/epsilon1/zeta/eta/theta/iota/kappa/lambda/mu/nu/xi/pi/rho/sigma/tau/upsilon/phi/chi/psi/tie]
+>>
+endobj
+35 0 obj
+<<
+/Encoding 32 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F7
+/FontDescriptor 34 0 R
+/BaseFont/ZHEONB+CMMI10
+/FirstChar 33
+/LastChar 196
+/Widths[622.5 466.3 591.4 828.1 517 362.8 654.2 1000 1000 1000 1000 277.8 277.8 500
+500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 777.8 500 777.8 500 530.9
+750 758.5 714.7 827.9 738.2 643.1 786.2 831.3 439.6 554.5 849.3 680.6 970.1 803.5
+762.8 642 790.6 759.3 613.2 584.4 682.8 583.3 944.4 828.5 580.6 682.6 388.9 388.9
+388.9 1000 1000 416.7 528.6 429.2 432.8 520.5 465.6 489.6 477 576.2 344.5 411.8 520.6
+298.4 878 600.2 484.7 503.1 446.4 451.2 468.7 361.1 572.5 484.7 715.9 571.5 490.3
+465 322.5 384 636.5 500 277.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+0 0 0 0 0 0 0 615.3 833.3 762.8 694.4 742.4 831.3 779.9 583.3 666.7 612.2 0 0 772.4
+639.7 565.6 517.7 444.4 405.9 437.5 496.5 469.4 353.9 576.2 583.3 602.5 494 437.5
+570 517 571.4 437.2 540.3 595.8 625.7 651.4 277.8]
+>>
+endobj
+38 0 obj
+<<
+/Encoding 7 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F8
+/FontDescriptor 37 0 R
+/BaseFont/OZINXB+CMR7
+/FirstChar 33
+/LastChar 196
+/Widths[323.4 569.4 938.5 569.4 938.5 877 323.4 446.4 446.4 569.4 877 323.4 384.9
+323.4 569.4 569.4 569.4 569.4 569.4 569.4 569.4 569.4 569.4 569.4 569.4 323.4 323.4
+323.4 877 538.7 538.7 877 843.3 798.6 815.5 860.1 767.9 737.1 883.9 843.3 412.7 583.3
+874 706.4 1027.8 843.3 877 767.9 877 829.4 631 815.5 843.3 843.3 1150.8 843.3 843.3
+692.5 323.4 569.4 323.4 569.4 323.4 323.4 569.4 631 507.9 631 507.9 354.2 569.4 631
+323.4 354.2 600.2 323.4 938.5 631 569.4 631 600.2 446.4 452.6 446.4 631 600.2 815.5
+600.2 600.2 507.9 569.4 1138.9 569.4 569.4 569.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 706.4 938.5 877 781.8 754 843.3 815.5 877 815.5
+877 0 0 815.5 677.6 646.8 646.8 970.2 970.2 323.4 354.2 569.4 569.4 569.4 569.4 569.4
+843.3 507.9 569.4 815.5 877 569.4 1013.9 1136.9 877 323.4 569.4]
+>>
+endobj
+39 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 824
+>>
+stream
+xݘK0
+Bxc@<.,@b>~$inJPrbObJʗ(4Fm?)DueٷƋfJT`ZudbMH.I|l`'A!1Ã.E8]~yN*tx^5@<.N>>ng}DDT! >wPyr?