diff --git a/books/bookvol10.4.pamphlet b/books/bookvol10.4.pamphlet
index 0fa2784..92b7599 100644
--- a/books/bookvol10.4.pamphlet
+++ b/books/bookvol10.4.pamphlet
@@ -123618,7 +123618,7 @@ PolynomialFactorizationByRecursion(R,E, VarSet:OrderedSet, S): public ==
-- then we have all the factors
return [append(foundFactors, factors)]
step:=solveLinearPolynomialEquation(origFactors,
- map(eval(#1,vv,r),
+ map(z1 +-> eval(z1,vv,r),
Ecart))
step case "failed" => return "failed" -- must be a false split
factors:=[a+b*pn for a in factors for b in step]
@@ -123644,12 +123644,12 @@ PolynomialFactorizationByRecursion(R,E, VarSet:OrderedSet, S): public ==
-- pp is square-free as a Sup, and its coefficients have precisely
-- the variables of lvpp. Furthermore, its LC is a unit
-- returns "failed" if the substitution is bad, else a factorization
- ppR:=map(eval(#1,first lvpp,r),pp)
+ ppR:=map(z1 +-> eval(z1,first lvpp,r),pp)
degree ppR < degree pp => "failed"
degree gcd(ppR,differentiate ppR) >0 => "failed"
factors:=
empty? rest lvpp =>
- fDown:=factorSquareFreePolynomial map(retract(#1)::R,ppR)
+ fDown:=factorSquareFreePolynomial map(z1 +-> retract(z1)::R,ppR)
[raise (unit fDown * factorList(fDown).first.fctr),
:[raise u.fctr for u in factorList(fDown).rest]]
fSame:=factorSFBRlcUnit(rest lvpp,ppR)
@@ -123685,7 +123685,7 @@ PolynomialFactorizationByRecursion(R,E, VarSet:OrderedSet, S): public ==
ppR: SupSupR:=map(univariate,pp)
ans:=solveLinearPolynomialEquation(lpolysR,ppR)$SupR
ans case "failed" => "failed"
- [map(multivariate(#1,v),w) for w in ans]
+ [map(z1 +-> multivariate(z1,v),w) for w in ans]
else
bivariateSLPEBR(lpolys,pp,v) ==
solveLinearPolynomialEquationByFractions(lpolys,pp)$LPEBFS
@@ -123695,7 +123695,7 @@ PolynomialFactorizationByRecursion(R,E, VarSet:OrderedSet, S): public ==
while true repeat
substns:= [randomR() for v in lvpp]
zero? eval(leadingCoefficient pp,lvpp,substns ) => "next"
- ppR:=map((retract eval(#1,lvpp,substns))::R,pp)
+ ppR:=map(z1 +->(retract eval(z1,lvpp,substns))::R,pp)
degree gcd(ppR,differentiate ppR)>0 => "next"
leave
[substns,ppR]
@@ -123708,7 +123708,7 @@ PolynomialFactorizationByRecursion(R,E, VarSet:OrderedSet, S): public ==
zero? eval(leadingCoefficient pp,lvpolys,substns ) => "next"
"or"/[zero? eval(leadingCoefficient u,lvpolys,substns)
for u in lpolys] => "next"
- lpolysR:=[map((retract eval(#1,lvpolys,substns))::R,u)
+ lpolysR:=[map(z1 +-> (retract eval(z1,lvpolys,substns))::R,u)
for u in lpolys]
uu:=lpolysR
while not empty? uu repeat
@@ -123716,15 +123716,15 @@ PolynomialFactorizationByRecursion(R,E, VarSet:OrderedSet, S): public ==
uu:=rest uu
not empty? uu => "next"
leave
- ppR:=map((retract eval(#1,lvpolys,substns))::R,pp)
+ ppR:=map(z1 +-> (retract eval(z1,lvpolys,substns))::R,pp)
[substns,lpolysR,ppR]
- raise(supR) == map(#1:R::S,supR)
- lower(pp) == map(retract(#1)::R,pp)
+ raise(supR) == map(z1 +-> z1:R::S,supR)
+ lower(pp) == map(z1 +-> retract(z1)::R,pp)
SLPEBR(lpolys,lvpolys,pp,lvpp) ==
not empty? (m:=setDifference(lvpp,lvpolys)) =>
v:=first m
lvpp:=remove(v,lvpp)
- pp1:SupSupS :=swap map(univariate(#1,v),pp)
+ pp1:SupSupS :=swap map(z1 +-> univariate(z1,v),pp)
-- pp1 is mathematically equal to pp, but is in S[z][v]
-- so we wish to operate on all of its coefficients
ans:List SupSupS:= [0 for u in lpolys]
@@ -123733,7 +123733,7 @@ PolynomialFactorizationByRecursion(R,E, VarSet:OrderedSet, S): public ==
ans1 case "failed" => return "failed"
d:=degree m
ans:=[monomial(a1,d)+a for a in ans for a1 in ans1]
- [map(multivariate(#1,v),swap pp1) for pp1 in ans]
+ [map(z1 +-> multivariate(z1,v),swap pp1) for pp1 in ans]
empty? lvpolys =>
lpolysR:List SupR
ppR:SupR
@@ -123741,7 +123741,7 @@ PolynomialFactorizationByRecursion(R,E, VarSet:OrderedSet, S): public ==
ppR:=map(retract,pp)
ansR:=solveLinearPolynomialEquation(lpolysR,ppR)
ansR case "failed" => return "failed"
- [map(#1::S,uu) for uu in ansR]
+ [map(z1 +-> z1::S,uu) for uu in ansR]
cVS:=chooseSLPEViableSubstitutions(lvpolys,lpolys,pp)
ansR:=solveLinearPolynomialEquation(cVS.lpolysRField,cVS.ppRField)
ansR case "failed" => "failed"
@@ -123765,7 +123765,7 @@ PolynomialFactorizationByRecursion(R,E, VarSet:OrderedSet, S): public ==
unit? c => refine(squareFree pp,factorSquareFreeByRecursion)
pp:=(pp exquo c)::SupS
mergeFactors(refine(squareFree pp,factorSquareFreeByRecursion),
- map(#1:S::SupS,factor(c)$S))
+ map(z1 +-> z1:S::SupS,factor(c)$S))
factorSquareFreeByRecursion pp ==
lv:List(VarSet) := removeDuplicates_!
concat [variables z for z in coefficients pp]
diff --git a/changelog b/changelog
index dc35503..a634369 100644
--- a/changelog
+++ b/changelog
@@ -1,3 +1,5 @@
+20090612 tpd src/axiom-website/patches.html 20090612.04.tpd.patch
+20090612 tpd books/bookvol10.4 PFBR +-> conversion
20090612 tpd src/axiom-website/patches.html 20090612.03.tpd.patch
20090612 tpd books/bookvol10.4 POLYCATQ +-> conversion
20090612 tpd src/axiom-website/patches.html 20090612.02.tpd.patch
diff --git a/src/axiom-website/patches.html b/src/axiom-website/patches.html
index 4d43419..18fed6d 100644
--- a/src/axiom-website/patches.html
+++ b/src/axiom-website/patches.html
@@ -1553,5 +1553,7 @@ bookvol10.4 PFOQ +-> conversion
bookvol10.4 PAN2EXPR +-> conversion
20090612.03.tpd.patch
bookvol10.4 POLYCATQ +-> conversion
+20090612.04.tpd.patch
+bookvol10.4 PFBR +-> conversion