diff --git a/books/bookvol10.4.pamphlet b/books/bookvol10.4.pamphlet index 0fa2784..92b7599 100644 --- a/books/bookvol10.4.pamphlet +++ b/books/bookvol10.4.pamphlet @@ -123618,7 +123618,7 @@ PolynomialFactorizationByRecursion(R,E, VarSet:OrderedSet, S): public == -- then we have all the factors return [append(foundFactors, factors)] step:=solveLinearPolynomialEquation(origFactors, - map(eval(#1,vv,r), + map(z1 +-> eval(z1,vv,r), Ecart)) step case "failed" => return "failed" -- must be a false split factors:=[a+b*pn for a in factors for b in step] @@ -123644,12 +123644,12 @@ PolynomialFactorizationByRecursion(R,E, VarSet:OrderedSet, S): public == -- pp is square-free as a Sup, and its coefficients have precisely -- the variables of lvpp. Furthermore, its LC is a unit -- returns "failed" if the substitution is bad, else a factorization - ppR:=map(eval(#1,first lvpp,r),pp) + ppR:=map(z1 +-> eval(z1,first lvpp,r),pp) degree ppR < degree pp => "failed" degree gcd(ppR,differentiate ppR) >0 => "failed" factors:= empty? rest lvpp => - fDown:=factorSquareFreePolynomial map(retract(#1)::R,ppR) + fDown:=factorSquareFreePolynomial map(z1 +-> retract(z1)::R,ppR) [raise (unit fDown * factorList(fDown).first.fctr), :[raise u.fctr for u in factorList(fDown).rest]] fSame:=factorSFBRlcUnit(rest lvpp,ppR) @@ -123685,7 +123685,7 @@ PolynomialFactorizationByRecursion(R,E, VarSet:OrderedSet, S): public == ppR: SupSupR:=map(univariate,pp) ans:=solveLinearPolynomialEquation(lpolysR,ppR)$SupR ans case "failed" => "failed" - [map(multivariate(#1,v),w) for w in ans] + [map(z1 +-> multivariate(z1,v),w) for w in ans] else bivariateSLPEBR(lpolys,pp,v) == solveLinearPolynomialEquationByFractions(lpolys,pp)$LPEBFS @@ -123695,7 +123695,7 @@ PolynomialFactorizationByRecursion(R,E, VarSet:OrderedSet, S): public == while true repeat substns:= [randomR() for v in lvpp] zero? eval(leadingCoefficient pp,lvpp,substns ) => "next" - ppR:=map((retract eval(#1,lvpp,substns))::R,pp) + ppR:=map(z1 +->(retract eval(z1,lvpp,substns))::R,pp) degree gcd(ppR,differentiate ppR)>0 => "next" leave [substns,ppR] @@ -123708,7 +123708,7 @@ PolynomialFactorizationByRecursion(R,E, VarSet:OrderedSet, S): public == zero? eval(leadingCoefficient pp,lvpolys,substns ) => "next" "or"/[zero? eval(leadingCoefficient u,lvpolys,substns) for u in lpolys] => "next" - lpolysR:=[map((retract eval(#1,lvpolys,substns))::R,u) + lpolysR:=[map(z1 +-> (retract eval(z1,lvpolys,substns))::R,u) for u in lpolys] uu:=lpolysR while not empty? uu repeat @@ -123716,15 +123716,15 @@ PolynomialFactorizationByRecursion(R,E, VarSet:OrderedSet, S): public == uu:=rest uu not empty? uu => "next" leave - ppR:=map((retract eval(#1,lvpolys,substns))::R,pp) + ppR:=map(z1 +-> (retract eval(z1,lvpolys,substns))::R,pp) [substns,lpolysR,ppR] - raise(supR) == map(#1:R::S,supR) - lower(pp) == map(retract(#1)::R,pp) + raise(supR) == map(z1 +-> z1:R::S,supR) + lower(pp) == map(z1 +-> retract(z1)::R,pp) SLPEBR(lpolys,lvpolys,pp,lvpp) == not empty? (m:=setDifference(lvpp,lvpolys)) => v:=first m lvpp:=remove(v,lvpp) - pp1:SupSupS :=swap map(univariate(#1,v),pp) + pp1:SupSupS :=swap map(z1 +-> univariate(z1,v),pp) -- pp1 is mathematically equal to pp, but is in S[z][v] -- so we wish to operate on all of its coefficients ans:List SupSupS:= [0 for u in lpolys] @@ -123733,7 +123733,7 @@ PolynomialFactorizationByRecursion(R,E, VarSet:OrderedSet, S): public == ans1 case "failed" => return "failed" d:=degree m ans:=[monomial(a1,d)+a for a in ans for a1 in ans1] - [map(multivariate(#1,v),swap pp1) for pp1 in ans] + [map(z1 +-> multivariate(z1,v),swap pp1) for pp1 in ans] empty? lvpolys => lpolysR:List SupR ppR:SupR @@ -123741,7 +123741,7 @@ PolynomialFactorizationByRecursion(R,E, VarSet:OrderedSet, S): public == ppR:=map(retract,pp) ansR:=solveLinearPolynomialEquation(lpolysR,ppR) ansR case "failed" => return "failed" - [map(#1::S,uu) for uu in ansR] + [map(z1 +-> z1::S,uu) for uu in ansR] cVS:=chooseSLPEViableSubstitutions(lvpolys,lpolys,pp) ansR:=solveLinearPolynomialEquation(cVS.lpolysRField,cVS.ppRField) ansR case "failed" => "failed" @@ -123765,7 +123765,7 @@ PolynomialFactorizationByRecursion(R,E, VarSet:OrderedSet, S): public == unit? c => refine(squareFree pp,factorSquareFreeByRecursion) pp:=(pp exquo c)::SupS mergeFactors(refine(squareFree pp,factorSquareFreeByRecursion), - map(#1:S::SupS,factor(c)$S)) + map(z1 +-> z1:S::SupS,factor(c)$S)) factorSquareFreeByRecursion pp == lv:List(VarSet) := removeDuplicates_! concat [variables z for z in coefficients pp] diff --git a/changelog b/changelog index dc35503..a634369 100644 --- a/changelog +++ b/changelog @@ -1,3 +1,5 @@ +20090612 tpd src/axiom-website/patches.html 20090612.04.tpd.patch +20090612 tpd books/bookvol10.4 PFBR +-> conversion 20090612 tpd src/axiom-website/patches.html 20090612.03.tpd.patch 20090612 tpd books/bookvol10.4 POLYCATQ +-> conversion 20090612 tpd src/axiom-website/patches.html 20090612.02.tpd.patch diff --git a/src/axiom-website/patches.html b/src/axiom-website/patches.html index 4d43419..18fed6d 100644 --- a/src/axiom-website/patches.html +++ b/src/axiom-website/patches.html @@ -1553,5 +1553,7 @@ bookvol10.4 PFOQ +-> conversion
bookvol10.4 PAN2EXPR +-> conversion
20090612.03.tpd.patch bookvol10.4 POLYCATQ +-> conversion
+20090612.04.tpd.patch +bookvol10.4 PFBR +-> conversion