diff --git a/books/bookvol10.pamphlet b/books/bookvol10.pamphlet
index 02f5902..14e5bd0 100644
--- a/books/bookvol10.pamphlet
+++ b/books/bookvol10.pamphlet
@@ -241,7 +241,222 @@ November 10, 2003 ((iHy))
\pagenumbering{arabic}
\setcounter{chapter}{0} % Chapter 1
\chapter{Implementation}
+
+\section{Elementary Functions\cite{4}}
+\subsection{Rationale for Branch Cuts and Identities}
+
+Perhaps one of the most vexing problems to be addressed when
+attempting to determine a set of mathematical function definitions is
+the choice of the principal branches of the inverses of the
+exponential, trigonometric and hyperbolic functions, and, further, the
+mathematical form that these functions take on their domains (the
+complex plane slit by the corresponding branch cuts). The fundamental
+issue facing the mathematical library developer is the plethora of
+possibilities, and while some choices are demonstrably inferior, there
+is rarely a choice which is clearly best.
+
+Following Kahan [1], we will refer to the mathematical formula we use
+to define the principal branch of each such function as its principal
+expression. For the inverse trigonometric and inverse hyperbolic
+functions, this principal expression is given in terms of the
+functions $\ln{}z$ and $\sqrt{z}$.
+
+The choices set out in this Standard are derived from the following
+principles:
+\begin{enumerate}
+\item Branch cuts must lie completely within either the real or imaginary axis.
+\item The principal expression must not have any singularities at finite
+points which the original function does not share.
+\item Branch cuts end at branch points.
+\item Where not otherwise determined, the value of a function on its branch
+cut or cuts is obtained by taking a limit along a path which approaches the
+branch cut in a counterclockwise manner around one of the branch points
+which terminate the cut (“counterclockwise continuity”, or CCC for short).
+\item Each inverse trigonometric or hyperbolic function must be real-valued
+on the range of the corresponding trigonometric or hyperbolic function when
+restricted to the real axis.
+\end{enumerate}
+
+Further explanation of these principles can be found in [1].
+
+While standard identities such as $\ln \frac{1}{x} = -\ln x$ hold for
+$x > 0$, they generally fail to hold for complex
+arguments of principal branches, even complex arguments which do not
+lie on a branch cut. Consequently, a definition of, say,
+\[\arctan z =\frac{i}{2}(\ln(1-iz)-\ln(1+iz))\]
+is not the same as the apparently equivalent
+\[i\ln\left(\sqrt\frac{1-iz}{1+iz}\right)\].
+It can be challenging to decide if two candidate expressions for
+representing an inverse trigonometric or hyperbolic function which agree
+in the mathematical domain are the same in the restricted computational realm
+of principal expressions.
+
+If the underlying computational mathematical system supports a signed
+zero, as prescribed by the IEEE/754 Standard [2], then a larger set of
+identities will hold. For example,
+\[\ln \frac{1}{z} = -\ln z\]
+holds for all complex $z$ in such a system, as do
+conjugate symmetry relations for functions such as
+$\arcsin z$. However, identities such as $\ln zw = \ln z + \ln w$
+still fail to hold for some complex $z$ and $w$.
+
+A useful function for representing identities involving complex
+functions which are related to the logarithm function is the complex
+signum function, defined as:
+\[
+{\rm csgn}(z) =
+\left\{
+\begin{array}{cc}
+1, & \mbox{if }\Re z > 0 \mbox{ or }\Re z = 0\mbox{ and }\Im z > 0 \\
+-1, & \mbox{if }\Re z < 0 \mbox{ or }\Re z = 0\mbox{ and }\Im z < 0 \\
+\end{array}
+\right.
+\]
+
+The value of ${\rm csgn}(0)$ is unspecified. Note, for example, that
+$\sqrt{z^2} = z {\rm csgn}(z)$.
+
+Using the principal expressions for each of the 12 inverse
+trigonometric and hyperbolic functions as given in this Standard, we
+have the following relations and identities:
+
+\subsection{Inverse trigonometric functions}
+\begin{tabular}{|c|l|}
+\hline
+$\arcsin(z)$ &
+$\begin{array}{l}
+\\
+= -\arcsin(-z) \\
+= \displaystyle\frac{\pi}{2} - \arccos(z) \\
+= -i {\rm arcsinh}(iz) \\
+\\
+\end{array}$ \\
+\hline
+$\arccos(z)$ &
+$\begin{array}{l}
+\\
+= \pi - \arccos(-z) \\
+= \displaystyle\frac{\pi}{2} - \arcsin(z) \\
+= i {\rm csgn}(i(z-1)) {\rm arccosh}(z) \\
+\\
+\end{array}$\\
+\hline
+$\arctan(z)$ &
+$\begin{array}{l}
+\\
+= -\arctan(-z) \\
+= \displaystyle\frac{\pi}{2} - {\rm arccot}(z) \\
+= -i {\rm arctanh}(iz) \\
+= -i \displaystyle\ln\left(\frac{1+iz}{\sqrt{z^2+1}}\right) \\
+\\
+\end{array}$ \\
+\hline
+${\rm arccot}(z)$ &
+$\begin{array}{l}
+\\
+= \pi - {\rm arccot}(-z) \\
+= \displaystyle\frac{\pi}{2} - \arctan(z) \\
+= i {\rm arccoth}(iz)+\displaystyle\frac{\pi}{2}(1-{\rm csgn}(z+i)) \\
+= -i \displaystyle\ln\left(\frac{z+i}{\sqrt{z^2+1}}\right) \\
+\\
+\end{array}$\\
+\hline
+${\rm arccsc}(z)$ &
+$\begin{array}{l}
+\\
+= - {\rm arccsc}(-z) \\
+= \displaystyle\arcsin(\frac{1}{z}) \\
+= \displaystyle\frac{\pi}{2} - {\rm arcsec}(z) \\
+= i\ {\rm arccsch}(iz) \\
+\\
+\end{array}$ \\
+\hline
+${\rm arcsec}(z)$ &
+$\begin{array}{l}
+\\
+= \pi - {\rm arcsec}(-z) \\
+= \arccos(\displaystyle\frac{1}{z}) \\
+= \displaystyle\frac{\pi}{2} - {\rm arccsc}(z) \\
+= i \displaystyle{\rm csgn}(i(\frac{1}{z}-1)) {\rm arcsech}(z) \\
+\\
+\end{array}$\\
+\hline
+\end{tabular}
+
+\subsection{Inverse hyperbolic functions}
+
+\begin{tabular}{|c|l|}
+\hline
+${\rm arcsin}h(z)$ &
+$\begin{array}{l}
+\\
+= -{\rm arcsinh}(-z) \\
+= \displaystyle\frac{\pi}{2}i - {\rm csgn}(i-z){\rm arccosh}(-iz) \\
+= -i {\rm arcsin}(iz) \\
+\\
+\end{array}$ \\
+\hline
+${\rm arccosh}(z)$ &
+$\begin{array}{l}
+\\
+= i {\rm csgn}(i(1-z)){\rm arccos}(z) \\
+= \displaystyle{\rm csgn}(i(1-z))(\frac{\pi}{2}i - {\rm arcsinh}(iz)) \\
+\\
+\end{array}$ \\
+\hline
+${\rm arctanh}(z)$ &
+$\begin{array}{l}
+\\
+= -{\rm arctanh}(-z) \\
+= \displaystyle{\rm arccoth}(z) -\frac{\pi}{2}i {\rm csgn}(i(z-1)) \\
+= -i {\rm arctan}(iz) \\
+= -\displaystyle\ln\left(\frac{1-z}{\sqrt{1-z^2}}\right) \\
+\\
+\end{array}$\\
+\hline
+${\rm arccoth}(z)$ &
+$\begin{array}{l}
+\\
+= \displaystyle{\rm arctanh}(z)+\frac{\pi}{2}i {\rm csgn}(i(z-1)) \\
+= i \displaystyle{\rm arccot}(iz)+\frac{\pi}{2}i ({\rm csgn}(i(z-1))-1) \\
+= i \displaystyle{\rm arctan}(-iz)+\frac{\pi}{2}i {\rm csgn}(i(z-1)) \\
+\\
+\end{array}$ \\
+\hline
+${\rm arccsch}(z) $ &
+$\begin{array}{l}
+\\
+= -{\rm arccscn}(-z) \\
+= \displaystyle{\rm arcsinn}(\frac{1}{z}) \\
+= \displaystyle{\rm csgn}(i+\frac{1}{z}){\rm arcsech}(-iz)-\frac{\pi}{2}i \\
+= i {\rm arccsc}(iz) \\
+\\
+\end{array}$ \\
+\hline
+${\rm arcsech}(z)$ &
+$\begin{array}{l}
+\\
+= \displaystyle{\rm arccosh}(\frac{1}{z}) \\
+= i \displaystyle{\rm csgn}(i(1-\frac{1}{z})) {\rm arcsec}(z) \\
+= \displaystyle{\rm csgn}(i(1-\frac{1}{z}))(\frac{\pi}{2}i+{\rm arccsch}(iz) \\
+\\
+\end{array}$ \\
+\hline
+\end{tabular}
+
+\eject
\begin{thebibliography}{99}
+\bibitem{1} Kahan, W., “Branch cuts for complex elementary functions, or,
+Much ado about nothing's sign bit”, Proceedings of the joint IMA/SIAM
+conference on The State of the Art in Numerical Analysis, University of
+Birmingham, A. Iserles and M.J.D. Powell, eds, Clarendon Press,
+Oxford,1987, 165-210.
+\bibitem{2} IEEE standard 754-1985 for binary floating-point arithmetic,
+reprinted in ACM SIGPLAN Notices 22 \#2 (1987), 9-25.
+\bibitem{3} IEEE standard 754-2008
+\bibitem{4} Numerical Mathematics Consortium
+Technical Specification 1.0 (Draft)
+\verb|http://www.nmconstorium.org|
\end{thebibliography}
\printindex
\end{document}
diff --git a/changelog b/changelog
index cc1ce70..14860f1 100644
--- a/changelog
+++ b/changelog
@@ -1,3 +1,5 @@
+20100316 tpd src/axiom-website/patches.html 2010316.01.tpd.patch
+20100316 tpd books/bookvol10 add Elementary Functions branch cuts
20100311 tpd src/axiom-website/patches.html 2010311.02.tpd.patch
20100311 tpd src/input/unittest2.input add Nate Daly to credits
20100311 tpd readme add Nate Daly to credits
diff --git a/src/axiom-website/patches.html b/src/axiom-website/patches.html
index e59b4d0..e9afd56 100644
--- a/src/axiom-website/patches.html
+++ b/src/axiom-website/patches.html
@@ -2574,5 +2574,7 @@ src/input/unittest2.input fix broken tests
src/axiom-website/style.css rewrite per Nate Daly
20100311.02.tpd.patch
books/bookvol5.pamphlet add Nate Daly to credits
+20100316.01.tpd.patch
+books/bookvol10 add Elementary Functions branch cuts