diff --git a/books/bookvol10.2.pamphlet b/books/bookvol10.2.pamphlet index 9707312..3aa789a 100644 --- a/books/bookvol10.2.pamphlet +++ b/books/bookvol10.2.pamphlet @@ -1383,15 +1383,14 @@ This is directly exported but not implemented: \end{verbatim} \begin{chunk}{category ELTAB Eltable} -)abbrev category ELTAB Eltable ++ Author: Michael Monagan; revised by Manuel Bronstein and Manuel Bronstein ++ Date Created: August 87 through August 88 ++ Date Last Updated: April 1991 ++ Description: ++ An eltable over domains D and I is a structure which can be viewed -++ as a function from D to I. -++ Examples of eltable structures range from data structures, e.g. those -++ of type List, to algebraic structures like Polynomial. +++ as a function from D to I. Examples of eltable structures range from +++ data structures, For example, those of type List, to algebraic +++ structures like Polynomial. Eltable(S:SetCategory, Index:Type): Category == with elt : (%, S) -> Index diff --git a/buglist b/buglist index 59eb4b8..14cf6de 100644 --- a/buglist +++ b/buglist @@ -877,15 +877,6 @@ typos 40361: ========================================================================= -typos 40360: - ->compiling ELTAB.spad to ELTAB.nrlib - ---->bookvol10.2.pamphlet-->Eltable(constructor): Missing left brace -"An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to I. Examples of eltable structures range from data structures, \\spadignore{e.g.} those of type List, to algebraic structures like Polynomial." - - -========================================================================= typos 40359: >compiling MSYSCMD.spad to MSYSCMD.nrlib @@ -40515,3 +40506,13 @@ dup 50001: Warning: SREGSET;decompose has a duplicate definition in this file +fixed 20130316.06.tpd.patch +========================================================================= +typos 40360: + +>compiling ELTAB.spad to ELTAB.nrlib + +--->bookvol10.2.pamphlet-->Eltable(constructor): Missing left brace +"An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to I. Examples of eltable structures range from data structures, \\spadignore{e.g.} those of type List, to algebraic structures like Polynomial." + + diff --git a/src/axiom-website/patches.html b/src/axiom-website/patches.html index 2e385b3..a97d904 100644 --- a/src/axiom-website/patches.html +++ b/src/axiom-website/patches.html @@ -4079,5 +4079,7 @@ books/bookvol2 category theory notes books/bookvol10.4 ATTREG fix 40362 20130316.05.tpd.patch books/bookvol10.4 SREGSET fix 50001 +20130316.06.tpd.patch +books/bookvol10.4 ELTAB fix 40360