diff --git a/books/bookvol10.2.pamphlet b/books/bookvol10.2.pamphlet index 2daf16b..613dce3 100644 --- a/books/bookvol10.2.pamphlet +++ b/books/bookvol10.2.pamphlet @@ -4194,15 +4194,16 @@ These exports come from \refto{BasicType}(): \begin{chunk}{category LOGIC Logic} )abbrev category LOGIC Logic ++ Description: -++ `Logic' provides the basic operations for lattices, e.g., boolean algebra. +++ Logic provides the basic operations for lattices, +++ for example, boolean algebra. Logic: Category == BasicType with _~: % -> % ++ ~(x) returns the logical complement of x. _/_\: (%, %) -> % - ++ \spadignore { /\ }returns the logical `meet', e.g. `and'. + ++ \spadignore{/\} returns the logical `meet', for example, `and'. _\_/: (%, %) -> % - ++ \spadignore{ \/ } returns the logical `join', e.g. `or'. + ++ \spadignore{\/} returns the logical `join', for example, `or'. add _\_/(x: %,y: %) == _~( _/_\(_~(x), _~(y))) @@ -7351,7 +7352,7 @@ These exports come from \refto{SetCategory}(): ++ Date Last Updated: May 20, 1991 ++ References: Algebra 2d Edition, MacLane and Birkhoff, MacMillan 1979 ++ Description: -++ GradedModule(R,E) denotes ``E-graded R-module'', i.e. collection of +++ GradedModule(R,E) denotes ``E-graded R-module'', that is, collection of ++ R-modules indexed by an abelian monoid E. ++ An element \spad{g} of \spad{G[s]} for some specific \spad{s} in \spad{E} ++ is said to be an element of \spad{G} with degree \spad{s}. @@ -7362,30 +7363,37 @@ These exports come from \refto{SetCategory}(): ++ mathematical category of graded modules. GradedModule(R: CommutativeRing, E: AbelianMonoid): Category == - SetCategory with - degree: % -> E - ++ degree(g) names the degree of g. The set of all elements - ++ of a given degree form an R-module. - 0: constant -> % - ++ 0 denotes the zero of degree 0. - _*: (R, %) -> % - ++ r*g is left module multiplication. - _*: (%, R) -> % - ++ g*r is right module multiplication. - - _-: % -> % - ++ -g is the additive inverse of g in the module of elements - ++ of the same grade as g. - _+: (%, %) -> % - ++ g+h is the sum of g and h in the module of elements of - ++ the same degree as g and h. Error: if g and h - ++ have different degrees. - _-: (%, %) -> % - ++ g-h is the difference of g and h in the module of elements of - ++ the same degree as g and h. Error: if g and h - ++ have different degrees. - add - (x: %) - (y: %) == x+(-y) + SetCategory with + + degree: % -> E + ++ degree(g) names the degree of g. The set of all elements + ++ of a given degree form an R-module. + + 0: constant -> % + ++ \spad{0} denotes the zero of degree 0. + + _*: (R, %) -> % + ++ r*g is left module multiplication. + + _*: (%, R) -> % + ++ g*r is right module multiplication. + + _-: % -> % + ++ -g is the additive inverse of g in the module of elements + ++ of the same grade as g. + + _+: (%, %) -> % + ++ g+h is the sum of g and h in the module of elements of + ++ the same degree as g and h. Error: if g and h + ++ have different degrees. + + _-: (%, %) -> % + ++ g-h is the difference of g and h in the module of elements of + ++ the same degree as g and h. Error: if g and h + ++ have different degrees. + add + + (x: %) - (y: %) == x+(-y) \end{chunk} \begin{chunk}{GRMOD.dotabb} @@ -9898,10 +9906,10 @@ These exports come from \refto{SetCategory}(): ++ with an associative operation \spadop{*}. ++ ++ Axioms\br -++ \tab{5}\spad{associative("*":(%,%)->%)}\tab{5}\spad{ (x*y)*z = x*(y*z)} +++ \tab{5}\spad{associative("*":(%,%)->%)}\tab{5}\spad{(x*y)*z = x*(y*z)} ++ ++ Conditional attributes\br -++ \tab{5}\spad{commutative("*":(%,%)->%)}\tab{5}\spad{ x*y = y*x } +++ \tab{5}\spad{commutative("*":(%,%)->%)}\tab{5}\spad{x*y = y*x} SemiGroup(): Category == SetCategory with @@ -13211,23 +13219,29 @@ These exports come from \refto{RetractableTo}(R:CommutativeRing): ++ with the same mapping type can be distinguished by name. GradedAlgebra(R: CommutativeRing, E: AbelianMonoid): Category == - Join(GradedModule(R, E),RetractableTo(R)) with - 1: constant -> % - ++ 1 is the identity for \spad{product}. - product: (%, %) -> % - ++ product(a,b) is the degree-preserving R-linear product: - ++ - ++ \spad{degree product(a,b) = degree a + degree b} - ++ \spad{product(a1+a2,b) = product(a1,b) + product(a2,b)} - ++ \spad{product(a,b1+b2) = product(a,b1) + product(a,b2)} - ++ \spad{product(r*a,b) = product(a,r*b) = r*product(a,b)} - ++ \spad{product(a,product(b,c)) = product(product(a,b),c)} - add - if not (R is %) then - 0: % == (0$R)::% - 1: % == 1$R::% - (r: R)*(x: %) == product(r::%, x) - (x: %)*(r: R) == product(x, r::%) + Join(GradedModule(R, E),RetractableTo(R)) with + + 1: constant -> % + ++ \spad{1} is the identity for \spad{product}. + + product: (%, %) -> % + ++ product(a,b) is the degree-preserving R-linear product: + ++ + ++ \spad{degree product(a,b) = degree a + degree b} + ++ \spad{product(a1+a2,b) = product(a1,b) + product(a2,b)} + ++ \spad{product(a,b1+b2) = product(a,b1) + product(a,b2)} + ++ \spad{product(r*a,b) = product(a,r*b) = r*product(a,b)} + ++ \spad{product(a,product(b,c)) = product(product(a,b),c)} + add + if not (R is %) then + + 0: % == (0$R)::% + + 1: % == 1$R::% + + (r: R)*(x: %) == product(r::%, x) + + (x: %)*(r: R) == product(x, r::%) \end{chunk} \begin{chunk}{GRALG.dotabb} @@ -13752,55 +13766,69 @@ These exports come from \refto{Monad}(): ++ AMS, Providence, 1968 ++ Description: ++ MonadWithUnit is the class of multiplicative monads with unit, -++ i.e. sets with a binary operation and a unit element. +++ that is, sets with a binary operation and a unit element. ++ ++ Axioms\br -++ \tab{5}leftIdentity("*":(%,%)->%,1) e.g. 1*x=x\br -++ \tab{5}rightIdentity("*":(%,%)->%,1) e.g x*1=x +++ \tab{5}leftIdentity("*":(%,%)->%,1) for example, 1*x=x\br +++ \tab{5}rightIdentity("*":(%,%)->%,1) for example, x*1=x ++ ++ Common Additional Axioms\br ++ \tab{5}unitsKnown - if "recip" says "failed", it PROVES input wasn't a unit MonadWithUnit(): Category == Monad with + 1: constant -> % - ++ 1 returns the unit element, denoted by 1. + ++ \spad{1} returns the unit element, denoted by 1. + one?: % -> Boolean ++ one?(a) tests whether \spad{a} is the unit 1. + rightPower: (%,NonNegativeInteger) -> % ++ rightPower(a,n) returns the \spad{n}-th right power of \spad{a}, - ++ i.e. \spad{rightPower(a,n) := rightPower(a,n-1) * a} and + ++ that is, \spad{rightPower(a,n) := rightPower(a,n-1) * a} and ++ \spad{rightPower(a,0) := 1}. + leftPower: (%,NonNegativeInteger) -> % ++ leftPower(a,n) returns the \spad{n}-th left power of \spad{a}, - ++ i.e. \spad{leftPower(a,n) := a * leftPower(a,n-1)} and + ++ that is, \spad{leftPower(a,n) := a * leftPower(a,n-1)} and ++ \spad{leftPower(a,0) := 1}. + "**": (%,NonNegativeInteger) -> % ++ \spad{a**n} returns the \spad{n}-th power of \spad{a}, ++ defined by repeated squaring. + recip: % -> Union(%,"failed") ++ recip(a) returns an element, which is both a left and a right ++ inverse of \spad{a}, ++ or \spad{"failed"} if such an element doesn't exist or cannot ++ be determined (see unitsKnown). + leftRecip: % -> Union(%,"failed") ++ leftRecip(a) returns an element, which is a left inverse of ++ \spad{a}, or \spad{"failed"} if such an element doesn't exist ++ or cannot be determined (see unitsKnown). + rightRecip: % -> Union(%,"failed") ++ rightRecip(a) returns an element, which is a right inverse of ++ \spad{a}, or \spad{"failed"} if such an element doesn't exist ++ or cannot be determined (see unitsKnown). + add + import RepeatedSquaring(%) + one? x == x = 1 + x:% ** n:NonNegativeInteger == zero? n => 1 expt(x,n pretend PositiveInteger) + rightPower(a,n) == zero? n => 1 res := 1 for i in 1..n repeat res := res * a res + leftPower(a,n) == zero? n => 1 res := 1 @@ -16827,12 +16855,12 @@ These exports come from \refto{Monoid}(): \begin{chunk}{category GROUP Group} )abbrev category GROUP Group ++ Description: -++ The class of multiplicative groups, i.e. monoids with +++ The class of multiplicative groups, that is, monoids with ++ multiplicative inverses. ++ ++ Axioms\br -++ \tab{5}\spad{leftInverse("*":(%,%)->%,inv)}\tab{5}\spad{ inv(x)*x = 1 }\br -++ \tab{5}\spad{rightInverse("*":(%,%)->%,inv)}\tab{4}\spad{ x*inv(x) = 1 } +++ \tab{5}\spad{leftInverse("*":(%,%)->%,inv)}\tab{5}\spad{inv(x)*x = 1}\br +++ \tab{5}\spad{rightInverse("*":(%,%)->%,inv)}\tab{4}\spad{x*inv(x) = 1} Group(): Category == Monoid with inv: % -> % @@ -21611,37 +21639,40 @@ These exports come from \refto{BagAggregate}(S:Type): ++ A stack is a bag where the last item inserted is the first item extracted. StackAggregate(S:Type): Category == BagAggregate S with + finiteAggregate + push_!: (S,%) -> S - ++ push!(x,s) pushes x onto stack s, i.e. destructively changing s + ++push!(x,s) pushes x onto stack s, that is, destructively changing s ++ so as to have a new first (top) element x. ++ Afterwards, pop!(s) produces x and pop!(s) produces the original s. ++ ++X a:Stack INT:= stack [1,2,3,4,5] ++X push! a ++X a + pop_!: % -> S - ++ pop!(s) returns the top element x, destructively removing x from s. + ++pop!(s) returns the top element x, destructively removing x from s. ++ Note that Use \axiom{top(s)} to obtain x without removing it from s. ++ Error: if s is empty. ++ ++X a:Stack INT:= stack [1,2,3,4,5] ++X pop! a ++X a + top: % -> S - ++ top(s) returns the top element x from s; s remains unchanged. + ++top(s) returns the top element x from s; s remains unchanged. ++ Note that Use \axiom{pop!(s)} to obtain x and remove it from s. ++ ++X a:Stack INT:= stack [1,2,3,4,5] ++X top a + depth: % -> NonNegativeInteger - ++ depth(s) returns the number of elements of stack s. + ++depth(s) returns the number of elements of stack s. ++ Note that \axiom{depth(s) = #s}. ++ ++X a:Stack INT:= stack [1,2,3,4,5] ++X depth a - - \end{chunk} \begin{chunk}{SKAGG.dotabb} "SKAGG" [color=lightblue,href="bookvol10.2.pdf#nameddest=SKAGG"]; @@ -24996,14 +25027,16 @@ These exports come from \refto{OrderedSet}(): ++ Date Last Updated: 29 March 1990 ++ Description: ++ PermutationCategory provides a categorial environment -++ for subgroups of bijections of a set (i.e. permutations) +++ for subgroups of bijections of a set (that is, permutations) PermutationCategory(S:SetCategory): Category == Group with + cycle : List S -> % - ++ cycle(ls) coerces a cycle ls, i.e. a list with not + ++ cycle(ls) coerces a cycle ls, that is, a list with not ++ repetitions to a permutation, which maps ls.i to ++ ls.i+1, indices modulo the length of the list. ++ Error: if repetitions occur. + cycles : List List S -> % ++ cycles(lls) coerces a list list of cycles lls ++ to a permutation, each cycle being a list with not @@ -25011,21 +25044,27 @@ PermutationCategory(S:SetCategory): Category == Group with ++ ls.i to ls.i+1, indices modulo the length of the list, ++ then these permutations are mutiplied. ++ Error: if repetitions occur in one cycle. + eval : (%,S) -> S ++ eval(p, el) returns the image of el under the ++ permutation p. + elt : (%,S) -> S ++ elt(p, el) returns the image of el under the ++ permutation p. + orbit : (%,S) -> Set S ++ orbit(p, el) returns the orbit of el under the - ++ permutation p, i.e. the set which is given by applications of + ++ permutation p, that is, the set which is given by applications of ++ the powers of p to el. + "<" : (%,%) -> Boolean ++ p < q is an order relation on permutations. ++ Note that this order is only total if and only if S is totally ordered ++ or S is finite. + if S has OrderedSet then OrderedSet + if S has Finite then OrderedSet \end{chunk} @@ -31514,9 +31553,9 @@ These exports come from \refto{AbelianGroup}(): ++ multiplication by elements of the rng. ++ ++ Axioms\br -++ \tab{5}\spad{ x*(a*b) = (x*a)*b }\br -++ \tab{5}\spad{ x*(a+b) = (x*a)+(x*b) }\br -++ \tab{5}\spad{ (x+y)*x = (x*a)+(y*a) } +++ \tab{5}\spad{x*(a*b) = (x*a)*b}\br +++ \tab{5}\spad{x*(a+b) = (x*a)+(x*b)}\br +++ \tab{5}\spad{(x+y)*x = (x*a)+(y*a)} RightModule(R:Rng):Category == AbelianGroup with "*": (%,R) -> % @@ -31861,7 +31900,7 @@ These exports come from \refto{RightModule}(S:Ring): ++ to potentially different rings. ++ ++ Axiom\br -++ \tab{5}\spad{ r*(x*s) = (r*x)*s } +++ \tab{5}\spad{r*(x*s) = (r*x)*s} BiModule(R:Ring,S:Ring):Category == Join(LeftModule(R),RightModule(S)) with @@ -39050,31 +39089,39 @@ These exports come from \refto{Ring}(): ++ \tab{5}\spad{differentiate(x*y,e)=x*differentiate(y,e)+differentiate(x,e)*y} PartialDifferentialRing(S:SetCategory): Category == Ring with + differentiate: (%, S) -> % ++ differentiate(x,v) computes the partial derivative of x ++ with respect to v. + differentiate: (%, List S) -> % ++ differentiate(x,[s1,...sn]) computes successive partial ++ derivatives, - ++ i.e. \spad{differentiate(...differentiate(x, s1)..., sn)}. + ++ that is, \spad{differentiate(...differentiate(x, s1)..., sn)}. + differentiate: (%, S, NonNegativeInteger) -> % - ++ differentiate(x, s, n) computes multiple partial derivatives, i.e. - ++ n-th derivative of x with respect to s. + ++ differentiate(x, s, n) computes multiple partial derivatives, + ++ that is, n-th derivative of x with respect to s. + differentiate: (%, List S, List NonNegativeInteger) -> % ++ differentiate(x, [s1,...,sn], [n1,...,nn]) computes - ++ multiple partial derivatives, i.e. + ++ multiple partial derivatives, that is, \spad{D(...D(x, s1)..., sn)}. + D: (%, S) -> % ++ D(x,v) computes the partial derivative of x ++ with respect to v. + D: (%, List S) -> % ++ D(x,[s1,...sn]) computes successive partial derivatives, - ++ i.e. \spad{D(...D(x, s1)..., sn)}. + ++ that is, \spad{D(...D(x, s1)..., sn)}. + D: (%, S, NonNegativeInteger) -> % - ++ D(x, s, n) computes multiple partial derivatives, i.e. + ++ D(x, s, n) computes multiple partial derivatives, that is, ++ n-th derivative of x with respect to s. + D: (%, List S, List NonNegativeInteger) -> % ++ D(x, [s1,...,sn], [n1,...,nn]) computes - ++ multiple partial derivatives, i.e. + ++ multiple partial derivatives, that is, ++ \spad{D(...D(x, s1, n1)..., sn, nn)}. add differentiate(r:%, l:List S) == diff --git a/books/bookvol10.3.pamphlet b/books/bookvol10.3.pamphlet index 08dd0a3..8914b8f 100644 --- a/books/bookvol10.3.pamphlet +++ b/books/bookvol10.3.pamphlet @@ -44028,8 +44028,8 @@ o )show Float ++ The decision to choose the base to be binary has some unfortunate ++ consequences. First, decimal numbers like 0.3 cannot be represented ++ exactly. Second, there is a further loss of accuracy during -++ conversion to decimal for output. To compensate for this, if d -++ digits of precision are specified, \spad{1 + ceiling(log2 d)} bits are used. +++ conversion to decimal for output. To compensate for this, if d digits +++ of precision are specified, \spad{1 + ceiling(log2(10^d))} bits are used. ++ Two numbers that are displayed identically may therefore be ++ not equal. On the other hand, a significant efficiency loss would ++ be incurred if we chose to use a decimal base when the underlying @@ -85660,6 +85660,7 @@ o )show NumericalOptimizationProblem \end{tabular} \begin{chunk}{domain OPTPROB NumericalOptimizationProblem} +)abbrev domain OPTPROB NumericalOptimizationProblem ++ Author: Brian Dupee ++ Date Created: December 1997 ++ Date Last Updated: December 1997 @@ -85678,7 +85679,7 @@ o )show NumericalOptimizationProblem ++ cf:\axiomType{List Expression DoubleFloat},\br ++ ub:\axiomType{List OrderedCompletion DoubleFloat}) ++ -++ and one for least-squares problems that is optimization of a set of +++ and one for least-squares problems i.e. optimization of a set of ++ observations of a data set: ++ ++ \axiomType{Record}(lfn:\axiomType{List Expression DoubleFloat},\br diff --git a/buglist b/buglist index 96ebf10..81d466a 100644 --- a/buglist +++ b/buglist @@ -11,13 +11,12 @@ typos 40363: dup 50006: nonextend 60077: -========================================================================= -warnings 20572: - ->compiling SGROUP.spad to SGROUP.nrlib +============================================================================ ---->-->SemiGroup&(constructor): Missing left brace -"the class of all multiplicative semigroups, that is, a set with an associative operation \\spadop{*}. \\blankline Axioms\\br \\tab{5}\\spad{associative(\"*\":(\\%,\\%)->\\%)}\\tab{5}\\spad{ (x*y)*z = x*(y*z)} \\blankline Conditional attributes\\br \\tab{5}\\spad{commutative(\"*\":(\\%,\\%)->\\%)}\\tab{5}\\spad{ x*y = \\spad{y*x} }" + finalizing nrlib IDPAM + Warnings: + [1] +: res has no value + [2] +: endcell has no value ========================================================================= bug 7236: @@ -920,38 +919,6 @@ typos 40354: --->bookvol10.2.pamphlet-->BlowUpMethodCategory(constructor): Not documented!!!! --->bookvol10.2.pamphlet-->BlowUpMethodCategory(): Missing Description - -========================================================================= -typos 40353: - ->compiling LMODULE.spad to LMODULE.nrlib - ---->bookvol10.2.pamphlet-->LeftModule(constructor): Missing left brace -"The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline Axioms\\br \\tab{5}\\spad{ (a*b)*x = a*(b*x) }\\br \\tab{5}\\spad{ (a+b)*x = (a*x)+(b*x) }\\br \\tab{5}\\spad{ a*(x+y) = (a*x)+(a*y) }" - -========================================================================= -typos 40352: - ->compiling LOGIC.spad to LOGIC.nrlib ---->-->Logic&((/\ (% % %))): Missing right brace for \spadignore - ---->-->Logic&((\/ (% % %))): Missing left brace ---->-->Logic&((\/ (% % %))): Missing left brace -"\\spadignore{ \\spad{\\/} } returns the logical `join', \\spadignore{e.g.} `or'." - ---->-->Logic&(constructor): Missing left brace -"`Logic' provides the basic operations for lattices, \\spadignore{e.g.} boolean algebra." - ---->bookvol10.2.pamphlet-->Logic((/\ (% % %))): Missing right brace for \spadignore - ---->bookvol10.2.pamphlet-->Logic((\/ (% % %))): Missing left brace ---->bookvol10.2.pamphlet-->Logic((\/ (% % %))): Missing left brace -"\\spadignore{ \\spad{\\/} } returns the logical `join', \\spadignore{e.g.} `or'." - ---->bookvol10.2.pamphlet-->Logic(constructor): Missing left brace -"`Logic' provides the basic operations for lattices, \\spadignore{e.g.} boolean algebra." - - ========================================================================= typos 40349: @@ -972,14 +939,6 @@ typos 40348: ========================================================================= -typos 40344: - ->compiling RMODULE.spad to RMODULE.nrlib - ---->bookvol10.2.pamphlet-->RightModule(constructor): Missing left brace -"The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplication by elements of the rng. \\blankline Axioms\\br \\tab{5}\\spad{ x*(a*b) = (x*a)*b }\\br \\tab{5}\\spad{ x*(a+b) = (x*a)+(x*b) }\\br \\tab{5}\\spad{ (x+y)*x = (x*a)+(y*a) }" - -========================================================================= typos 40343: >compiling SETCATD.spad to SETCATD.nrlib @@ -1062,14 +1021,6 @@ typos 40335: "\\indented{1}{A cubic Bezier curve is a simple interpolation between the} \\indented{1}{starting point, a left-middle point,, a right-middle point,} \\indented{1}{and the ending point based on a parameter \\spad{t.}} \\indented{1}{Given a start point a=[x1,y1], the left-middle point b=[x2,y2],} \\indented{1}{the right-middle point c=[x3,y3] and an endpoint d=[x4,y4]} \\indented{1}{f(t) \\spad{==} \\spad{[(1-t)^3} \\spad{x1} + 3t(1-t)^2 \\spad{x2} + 3t^2 (1-t) \\spad{x3} + \\spad{t^3} x4,} \\indented{10}{(1-t)^3 \\spad{y1} + 3t(1-t)^2 \\spad{y2} + 3t^2 (1-t) \\spad{y3} + \\spad{t^3} y4]} \\blankline \\spad{X} n:=cubicBezier([2.0,2.0],[2.0,4.0],[6.0,4.0],[6.0,2.0]) \\spad{X} [n(t/10.0) for \\spad{t} in 0..10 by 1]" ========================================================================= -typos 40334: - ->compiling BMODULE.spad to BMODULE.nrlib - ---->bookvol10.2.pamphlet-->BiModule(constructor): Missing left brace -"A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline Axiom\\br \\tab{5}\\spad{ r*(x*s) = (r*x)*s }" - -========================================================================= typos 40333: >compiling FAMONC.spad to FAMONC.nrlib @@ -1078,105 +1029,6 @@ typos 40333: "\\indented{1}{size(x) returns the number of terms in \\spad{x.}} \\indented{1}{mapGen(f, \\spad{a1\\^e1} \\spad{...} an\\^en) returns} \\spad{f(a1)\\^e1 \\spad{...} f(an)\\^en}." ========================================================================= -typos 40332: - ->compiling GROUP.spad to GROUP.nrlib - ---->-->Group&(constructor): Missing left brace ---->-->Group&(constructor): Missing left brace -"The class of multiplicative groups, \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline Axioms\\br \\tab{5}\\spad{leftInverse(\"*\":(\\%,\\%)->\\%,inv)}\\tab{5}\\spad{ inv(x)*x = 1 }\\br \\tab{5}\\spad{rightInverse(\"*\":(\\%,\\%)->\\%,inv)}\\tab{4}\\spad{ x*inv(x) = 1 }" - ---->bookvol10.2.pamphlet-->Group(constructor): Missing left brace ---->bookvol10.2.pamphlet-->Group(constructor): Missing left brace -"The class of multiplicative groups, \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline Axioms\\br \\tab{5}\\spad{leftInverse(\"*\":(\\%,\\%)->\\%,inv)}\\tab{5}\\spad{ inv(x)*x = 1 }\\br \\tab{5}\\spad{rightInverse(\"*\":(\\%,\\%)->\\%,inv)}\\tab{4}\\spad{ x*inv(x) = 1 }" - -========================================================================= -typos 40331: - ->compiling MONADWU.spad to MONADWU.nrlib - ---->-->MonadWithUnit&(((One) (%) constant)): Improper first word in comments: -"1 returns the unit element, denoted by 1." - ---->-->MonadWithUnit&((rightPower (% % (NonNegativeInteger)))): Missing left brace -"\\spad{rightPower(a,n)} returns the \\spad{n}-th right power of \\spad{a}, \\spadignore{i.e.} \\spad{rightPower(a,n) \\spad{:=} rightPower(a,n-1) * a} and \\spad{rightPower(a,0) \\spad{:=} 1}." - ---->-->MonadWithUnit&((leftPower (% % (NonNegativeInteger)))): Missing left brace -"\\spad{leftPower(a,n)} returns the \\spad{n}-th left power of \\spad{a}, \\spadignore{i.e.} \\spad{leftPower(a,n) \\spad{:=} a * leftPower(a,n-1)} and \\spad{leftPower(a,0) \\spad{:=} 1}." - ---->-->MonadWithUnit&(constructor): Missing left brace ---->-->MonadWithUnit&(constructor): Missing left brace -"MonadWithUnit is the class of multiplicative monads with unit, \\spadignore{i.e.} sets with a binary operation and a unit element. \\blankline Axioms\\br \\tab{5}leftIdentity(\"*\":(\\%,\\%)->\\%,1) \\spadignore{e.g.} 1*x=x\\br \\tab{5}rightIdentity(\"*\":(\\%,\\%)->\\%,1) e.g x*1=x \\blankline Common Additional Axioms\\br \\tab{5}unitsKnown - if \"recip\" says \"failed\", it PROVES input wasn't a unit" - ---->bookvol10.2.pamphlet-->MonadWithUnit(((One) (%) constant)): Improper first word in comments: -"1 returns the unit element, denoted by 1." - ---->bookvol10.2.pamphlet-->MonadWithUnit((rightPower (% % (NonNegativeInteger)))): Missing left brace -"\\spad{rightPower(a,n)} returns the \\spad{n}-th right power of \\spad{a}, \\spadignore{i.e.} \\spad{rightPower(a,n) \\spad{:=} rightPower(a,n-1) * a} and \\spad{rightPower(a,0) \\spad{:=} 1}." - ---->bookvol10.2.pamphlet-->MonadWithUnit((leftPower (% % (NonNegativeInteger)))): Missing left brace -"\\spad{leftPower(a,n)} returns the \\spad{n}-th left power of \\spad{a}, \\spadignore{i.e.} \\spad{leftPower(a,n) \\spad{:=} a * leftPower(a,n-1)} and \\spad{leftPower(a,0) \\spad{:=} 1}." - ---->bookvol10.2.pamphlet-->MonadWithUnit(constructor): Missing left brace ---->bookvol10.2.pamphlet-->MonadWithUnit(constructor): Missing left brace -"MonadWithUnit is the class of multiplicative monads with unit, \\spadignore{i.e.} sets with a binary operation and a unit element. \\blankline Axioms\\br \\tab{5}leftIdentity(\"*\":(\\%,\\%)->\\%,1) \\spadignore{e.g.} 1*x=x\\br \\tab{5}rightIdentity(\"*\":(\\%,\\%)->\\%,1) e.g x*1=x \\blankline Common Additional Axioms\\br \\tab{5}unitsKnown - if \"recip\" says \"failed\", it PROVES input wasn't a unit" - -========================================================================= -typos 40330: - ->compiling PERMCAT.spad to PERMCAT.nrlib - ---->bookvol10.2.pamphlet-->PermutationCategory((cycle (% (List S)))): Missing left brace -"\\spad{cycle(ls)} coerces a cycle \\spad{ls,} \\spadignore{i.e.} a list with not repetitions to a permutation, which maps ls.i to ls.i+1, indices modulo the length of the list. Error: if repetitions occur." - ---->bookvol10.2.pamphlet-->PermutationCategory((orbit ((Set S) % S))): Missing left brace -"\\spad{orbit(p, el)} returns the orbit of el under the permutation \\spad{p,} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to el." - ---->bookvol10.2.pamphlet-->PermutationCategory(constructor): Mismatch: left pren matches right brace -"PermutationCategory provides a categorial environment for subgroups of bijections of a set (\\spadignore{i.e.} permutations)" - -========================================================================= -typos 40329: - ->compiling PDRING.spad to PDRING.nrlib - ---->-->PartialDifferentialRing&((differentiate (% % (List S)))): Missing left brace -"\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives, \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}." - ---->-->PartialDifferentialRing&((differentiate (% % S (NonNegativeInteger)))): Missing left brace -"\\spad{differentiate(x, \\spad{s,} \\spad{n)}} computes multiple partial derivatives, \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s.}" - ---->-->PartialDifferentialRing&((differentiate (% % (List S) (List (NonNegativeInteger))))): Missing left brace -"\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives, \\spadignore{i.e.}" - ---->-->PartialDifferentialRing&((D (% % (List S)))): Missing left brace -"\\spad{D(x,[s1,...sn])} computes successive partial derivatives, \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}." - ---->-->PartialDifferentialRing&((D (% % S (NonNegativeInteger)))): Missing left brace -"\\spad{D(x, \\spad{s,} \\spad{n)}} computes multiple partial derivatives, \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s.}" - ---->-->PartialDifferentialRing&((D (% % (List S) (List (NonNegativeInteger))))): Missing left brace -"\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives, \\spadignore{i.e.} \\spad{D(...D(x, \\spad{s1,} n1)..., \\spad{sn,} nn)}." - ---->bookvol10.2.pamphlet-->PartialDifferentialRing((differentiate (% % (List S)))): Missing left brace -"\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives, \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}." - ---->bookvol10.2.pamphlet-->PartialDifferentialRing((differentiate (% % S (NonNegativeInteger)))): Missing left brace -"\\spad{differentiate(x, \\spad{s,} \\spad{n)}} computes multiple partial derivatives, \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s.}" - ---->bookvol10.2.pamphlet-->PartialDifferentialRing((differentiate (% % (List S) (List (NonNegativeInteger))))): Missing left brace -"\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives, \\spadignore{i.e.}" - ---->bookvol10.2.pamphlet-->PartialDifferentialRing((D (% % (List S)))): Missing left brace -"\\spad{D(x,[s1,...sn])} computes successive partial derivatives, \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}." - ---->bookvol10.2.pamphlet-->PartialDifferentialRing((D (% % S (NonNegativeInteger)))): Missing left brace -"\\spad{D(x, \\spad{s,} \\spad{n)}} computes multiple partial derivatives, \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s.}" - ---->bookvol10.2.pamphlet-->PartialDifferentialRing((D (% % (List S) (List (NonNegativeInteger))))): Missing left brace -"\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives, \\spadignore{i.e.} \\spad{D(...D(x, \\spad{s1,} n1)..., \\spad{sn,} nn)}." - -========================================================================= typos 40328: --->bookvol10.2.pamphlet-->PlacesCategory((+ ((Divisor %) % %))): Not documented!!!! @@ -1213,23 +1065,6 @@ typos 40326: "\\indented{1}{delete!(u,i) destructively deletes the \\axiom{i}th element of u.} \\blankline \\spad{E} Data:=Record(age:Integer,gender:String) \\spad{E} a1:AssociationList(String,Data):=table() \\spad{E} a1.\"tim\":=[55,\"male\"]$Data \\spad{E} delete!(a1,1)" ========================================================================= -typos 40325: - ->compiling GRMOD.spad to GRMOD.nrlib - ---->-->GradedModule&(((Zero) (%) constant)): Improper first word in comments: -"0 denotes the zero of degree 0." - ---->-->GradedModule&(constructor): Missing left brace -"GradedModule(R,E) denotes ``E-graded R-module'', \\spadignore{i.e.} collection of R-modules indexed by an abelian monoid E. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with degree \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules." - ---->bookvol10.2.pamphlet-->GradedModule(((Zero) (%) constant)): Improper first word in comments: -"0 denotes the zero of degree 0." - ---->bookvol10.2.pamphlet-->GradedModule(constructor): Missing left brace -"GradedModule(R,E) denotes ``E-graded R-module'', \\spadignore{i.e.} collection of R-modules indexed by an abelian monoid E. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with degree \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules." - -========================================================================= typos 40324: >compiling IFAMON.spad to IFAMON.nrlib @@ -1238,35 +1073,6 @@ typos 40324: (|FreeAbelianMonoidCategory| |#1| |#2|) has no outputForm : (%,((OutputForm,OutputForm) -> OutputForm),((OutputForm,OutputForm) -> OutputForm),Integer) -> OutputForm ========================================================================= -typos 40323: - ->compiling GRALG.spad to GRALG.nrlib - ---->-->GradedAlgebra&(((One) (%) constant)): Improper first word in comments: -"1 is the identity for \\spad{product}." - ---->bookvol10.2.pamphlet-->GradedAlgebra(((One) (%) constant)): Improper first word in comments: -"1 is the identity for \\spad{product}." - -========================================================================= -typos 40322: - ->compiling SKAGG.spad to SKAGG.nrlib - ---->bookvol10.2.pamphlet-->StackAggregate((push! (S S %))): Improper first word in comments: ---->bookvol10.2.pamphlet-->StackAggregate((push! (S S %))): Missing left brace -"\\indented{1}{push!(x,s) pushes \\spad{x} onto stack \\spad{s,} \\spadignore{i.e.} destructively changing \\spad{s}} \\indented{1}{so as to have a new first (top) element \\spad{x.}} \\indented{1}{Afterwards, pop!(s) produces \\spad{x} and pop!(s) produces the original \\spad{s.}} \\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} push! a \\spad{X} a" - ---->bookvol10.2.pamphlet-->StackAggregate((pop! (S %))): Improper first word in comments: -"\\indented{1}{pop!(s) returns the top element \\spad{x,} destructively removing \\spad{x} from \\spad{s.}} \\indented{1}{Note that Use \\axiom{top(s)} to obtain \\spad{x} without removing it from \\spad{s.}} \\indented{1}{Error: if \\spad{s} is empty.} \\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} pop! a \\spad{X} a" - ---->bookvol10.2.pamphlet-->StackAggregate((top (S %))): Improper first word in comments: -"\\indented{1}{top(s) returns the top element \\spad{x} from \\spad{s;} \\spad{s} remains unchanged.} \\indented{1}{Note that Use \\axiom{pop!(s)} to obtain \\spad{x} and remove it from \\spad{s.}} \\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} top a" - ---->bookvol10.2.pamphlet-->StackAggregate((depth ((NonNegativeInteger) %))): Improper first word in comments: -"\\indented{1}{depth(s) returns the number of elements of stack \\spad{s.}} \\indented{1}{Note that \\axiom{depth(s) = \\#s}.} \\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} depth a" - -========================================================================= typos 40321: >compiling BSTREE.spad to BSTREE.nrlib @@ -28623,6 +28429,15 @@ Value = (|RepeatedDoubling|) ;; The variable |BiModule;CAT| is undefined. ;; The compiler will assume this variable is a global. +========================================================================= +warnings 20572: + +>compiling SGROUP.spad to SGROUP.nrlib + +--->-->SemiGroup&(constructor): Missing left brace +"the class of all multiplicative semigroups, that is, a set with an associative operation \\spadop{*}. \\blankline Axioms\\br \\tab{5}\\spad{associative(\"*\":(\\%,\\%)->\\%)}\\tab{5}\\spad{ (x*y)*z = x*(y*z)} \\blankline Conditional attributes\\br \\tab{5}\\spad{commutative(\"*\":(\\%,\\%)->\\%)}\\tab{5}\\spad{ x*y = \\spad{y*x} }" + + ============================================================================ finalizing nrlib CACHSET @@ -28700,13 +28515,6 @@ Value = (|RepeatedDoubling|) ============================================================================ - finalizing nrlib IDPAM - Warnings: - [1] +: res has no value - [2] +: endcell has no value - -============================================================================ - finalizing nrlib IXAGG ; (DEFUN |IndexedAggregate| ...) is being compiled. ;; The variable |IndexedAggregate;AL| is undefined. @@ -40505,3 +40313,185 @@ typos 40130: --->bookvol10.2.pamphlet-->FunctionFieldCategory((rationalPoints ((List (List F))))): Improper first word in comments: "\\indented{1}{rationalPoints() returns the list of all the affine} rational points." +fixed 20130318.02.tpd.patch +========================================================================= +typos 40334: + +>compiling BMODULE.spad to BMODULE.nrlib + +--->bookvol10.2.pamphlet-->BiModule(constructor): Missing left brace +"A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline Axiom\\br \\tab{5}\\spad{ r*(x*s) = (r*x)*s }" + +========================================================================= +typos 40353: + +>compiling LMODULE.spad to LMODULE.nrlib + +--->bookvol10.2.pamphlet-->LeftModule(constructor): Missing left brace +"The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline Axioms\\br \\tab{5}\\spad{ (a*b)*x = a*(b*x) }\\br \\tab{5}\\spad{ (a+b)*x = (a*x)+(b*x) }\\br \\tab{5}\\spad{ a*(x+y) = (a*x)+(a*y) }" + +========================================================================= +typos 40352: + +>compiling LOGIC.spad to LOGIC.nrlib +--->-->Logic&((/\ (% % %))): Missing right brace for \spadignore + +--->-->Logic&((\/ (% % %))): Missing left brace +--->-->Logic&((\/ (% % %))): Missing left brace +"\\spadignore{ \\spad{\\/} } returns the logical `join', \\spadignore{e.g.} `or'." + +--->-->Logic&(constructor): Missing left brace +"`Logic' provides the basic operations for lattices, \\spadignore{e.g.} boolean algebra." + +--->bookvol10.2.pamphlet-->Logic((/\ (% % %))): Missing right brace for \spadignore + +--->bookvol10.2.pamphlet-->Logic((\/ (% % %))): Missing left brace +--->bookvol10.2.pamphlet-->Logic((\/ (% % %))): Missing left brace +"\\spadignore{ \\spad{\\/} } returns the logical `join', \\spadignore{e.g.} `or'." + +--->bookvol10.2.pamphlet-->Logic(constructor): Missing left brace +"`Logic' provides the basic operations for lattices, \\spadignore{e.g.} boolean algebra." + + +========================================================================= +typos 40344: + +>compiling RMODULE.spad to RMODULE.nrlib + +--->bookvol10.2.pamphlet-->RightModule(constructor): Missing left brace +"The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplication by elements of the rng. \\blankline Axioms\\br \\tab{5}\\spad{ x*(a*b) = (x*a)*b }\\br \\tab{5}\\spad{ x*(a+b) = (x*a)+(x*b) }\\br \\tab{5}\\spad{ (x+y)*x = (x*a)+(y*a) }" + +========================================================================= +typos 40332: + +>compiling GROUP.spad to GROUP.nrlib + +--->-->Group&(constructor): Missing left brace +--->-->Group&(constructor): Missing left brace +"The class of multiplicative groups, \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline Axioms\\br \\tab{5}\\spad{leftInverse(\"*\":(\\%,\\%)->\\%,inv)}\\tab{5}\\spad{ inv(x)*x = 1 }\\br \\tab{5}\\spad{rightInverse(\"*\":(\\%,\\%)->\\%,inv)}\\tab{4}\\spad{ x*inv(x) = 1 }" + +--->bookvol10.2.pamphlet-->Group(constructor): Missing left brace +--->bookvol10.2.pamphlet-->Group(constructor): Missing left brace +"The class of multiplicative groups, \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline Axioms\\br \\tab{5}\\spad{leftInverse(\"*\":(\\%,\\%)->\\%,inv)}\\tab{5}\\spad{ inv(x)*x = 1 }\\br \\tab{5}\\spad{rightInverse(\"*\":(\\%,\\%)->\\%,inv)}\\tab{4}\\spad{ x*inv(x) = 1 }" + +========================================================================= +typos 40331: + +>compiling MONADWU.spad to MONADWU.nrlib + +--->-->MonadWithUnit&(((One) (%) constant)): Improper first word in comments: +"1 returns the unit element, denoted by 1." + +--->-->MonadWithUnit&((rightPower (% % (NonNegativeInteger)))): Missing left brace +"\\spad{rightPower(a,n)} returns the \\spad{n}-th right power of \\spad{a}, \\spadignore{i.e.} \\spad{rightPower(a,n) \\spad{:=} rightPower(a,n-1) * a} and \\spad{rightPower(a,0) \\spad{:=} 1}." + +--->-->MonadWithUnit&((leftPower (% % (NonNegativeInteger)))): Missing left brace +"\\spad{leftPower(a,n)} returns the \\spad{n}-th left power of \\spad{a}, \\spadignore{i.e.} \\spad{leftPower(a,n) \\spad{:=} a * leftPower(a,n-1)} and \\spad{leftPower(a,0) \\spad{:=} 1}." + +--->-->MonadWithUnit&(constructor): Missing left brace +--->-->MonadWithUnit&(constructor): Missing left brace +"MonadWithUnit is the class of multiplicative monads with unit, \\spadignore{i.e.} sets with a binary operation and a unit element. \\blankline Axioms\\br \\tab{5}leftIdentity(\"*\":(\\%,\\%)->\\%,1) \\spadignore{e.g.} 1*x=x\\br \\tab{5}rightIdentity(\"*\":(\\%,\\%)->\\%,1) e.g x*1=x \\blankline Common Additional Axioms\\br \\tab{5}unitsKnown - if \"recip\" says \"failed\", it PROVES input wasn't a unit" + +--->bookvol10.2.pamphlet-->MonadWithUnit(((One) (%) constant)): Improper first word in comments: +"1 returns the unit element, denoted by 1." + +--->bookvol10.2.pamphlet-->MonadWithUnit((rightPower (% % (NonNegativeInteger)))): Missing left brace +"\\spad{rightPower(a,n)} returns the \\spad{n}-th right power of \\spad{a}, \\spadignore{i.e.} \\spad{rightPower(a,n) \\spad{:=} rightPower(a,n-1) * a} and \\spad{rightPower(a,0) \\spad{:=} 1}." + +--->bookvol10.2.pamphlet-->MonadWithUnit((leftPower (% % (NonNegativeInteger)))): Missing left brace +"\\spad{leftPower(a,n)} returns the \\spad{n}-th left power of \\spad{a}, \\spadignore{i.e.} \\spad{leftPower(a,n) \\spad{:=} a * leftPower(a,n-1)} and \\spad{leftPower(a,0) \\spad{:=} 1}." + +--->bookvol10.2.pamphlet-->MonadWithUnit(constructor): Missing left brace +--->bookvol10.2.pamphlet-->MonadWithUnit(constructor): Missing left brace +"MonadWithUnit is the class of multiplicative monads with unit, \\spadignore{i.e.} sets with a binary operation and a unit element. \\blankline Axioms\\br \\tab{5}leftIdentity(\"*\":(\\%,\\%)->\\%,1) \\spadignore{e.g.} 1*x=x\\br \\tab{5}rightIdentity(\"*\":(\\%,\\%)->\\%,1) e.g x*1=x \\blankline Common Additional Axioms\\br \\tab{5}unitsKnown - if \"recip\" says \"failed\", it PROVES input wasn't a unit" + +========================================================================= +typos 40330: + +>compiling PERMCAT.spad to PERMCAT.nrlib + +--->bookvol10.2.pamphlet-->PermutationCategory((cycle (% (List S)))): Missing left brace +"\\spad{cycle(ls)} coerces a cycle \\spad{ls,} \\spadignore{i.e.} a list with not repetitions to a permutation, which maps ls.i to ls.i+1, indices modulo the length of the list. Error: if repetitions occur." + +--->bookvol10.2.pamphlet-->PermutationCategory((orbit ((Set S) % S))): Missing left brace +"\\spad{orbit(p, el)} returns the orbit of el under the permutation \\spad{p,} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to el." + +--->bookvol10.2.pamphlet-->PermutationCategory(constructor): Mismatch: left pren matches right brace +"PermutationCategory provides a categorial environment for subgroups of bijections of a set (\\spadignore{i.e.} permutations)" + +========================================================================= +typos 40329: + +>compiling PDRING.spad to PDRING.nrlib + +--->-->PartialDifferentialRing&((differentiate (% % (List S)))): Missing left brace +"\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives, \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}." + +--->-->PartialDifferentialRing&((differentiate (% % S (NonNegativeInteger)))): Missing left brace +"\\spad{differentiate(x, \\spad{s,} \\spad{n)}} computes multiple partial derivatives, \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s.}" + +--->-->PartialDifferentialRing&((differentiate (% % (List S) (List (NonNegativeInteger))))): Missing left brace +"\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives, \\spadignore{i.e.}" + +--->-->PartialDifferentialRing&((D (% % (List S)))): Missing left brace +"\\spad{D(x,[s1,...sn])} computes successive partial derivatives, \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}." + +--->-->PartialDifferentialRing&((D (% % S (NonNegativeInteger)))): Missing left brace +"\\spad{D(x, \\spad{s,} \\spad{n)}} computes multiple partial derivatives, \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s.}" + +--->-->PartialDifferentialRing&((D (% % (List S) (List (NonNegativeInteger))))): Missing left brace +"\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives, \\spadignore{i.e.} \\spad{D(...D(x, \\spad{s1,} n1)..., \\spad{sn,} nn)}." + +--->bookvol10.2.pamphlet-->PartialDifferentialRing((differentiate (% % (List S)))): Missing left brace +"\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives, \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}." + +--->bookvol10.2.pamphlet-->PartialDifferentialRing((differentiate (% % S (NonNegativeInteger)))): Missing left brace +"\\spad{differentiate(x, \\spad{s,} \\spad{n)}} computes multiple partial derivatives, \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s.}" + +--->bookvol10.2.pamphlet-->PartialDifferentialRing((differentiate (% % (List S) (List (NonNegativeInteger))))): Missing left brace +"\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives, \\spadignore{i.e.}" + +--->bookvol10.2.pamphlet-->PartialDifferentialRing((D (% % (List S)))): Missing left brace +"\\spad{D(x,[s1,...sn])} computes successive partial derivatives, \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}." + +--->bookvol10.2.pamphlet-->PartialDifferentialRing((D (% % S (NonNegativeInteger)))): Missing left brace +"\\spad{D(x, \\spad{s,} \\spad{n)}} computes multiple partial derivatives, \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s.}" + +--->bookvol10.2.pamphlet-->PartialDifferentialRing((D (% % (List S) (List (NonNegativeInteger))))): Missing left brace +"\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives, \\spadignore{i.e.} \\spad{D(...D(x, \\spad{s1,} n1)..., \\spad{sn,} nn)}." + +========================================================================= +typos 40325: + +>compiling GRMOD.spad to GRMOD.nrlib + +--->-->GradedModule&(((Zero) (%) constant)): Improper first word in comments: +"0 denotes the zero of degree 0." + +--->-->GradedModule&(constructor): Missing left brace +"GradedModule(R,E) denotes ``E-graded R-module'', \\spadignore{i.e.} collection of R-modules indexed by an abelian monoid E. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with degree \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules." + +--->bookvol10.2.pamphlet-->GradedModule(((Zero) (%) constant)): Improper first word in comments: +"0 denotes the zero of degree 0." + +--->bookvol10.2.pamphlet-->GradedModule(constructor): Missing left brace +"GradedModule(R,E) denotes ``E-graded R-module'', \\spadignore{i.e.} collection of R-modules indexed by an abelian monoid E. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with degree \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules." + +========================================================================= +typos 40322: + +>compiling SKAGG.spad to SKAGG.nrlib + +--->bookvol10.2.pamphlet-->StackAggregate((push! (S S %))): Improper first word in comments: +--->bookvol10.2.pamphlet-->StackAggregate((push! (S S %))): Missing left brace +"\\indented{1}{push!(x,s) pushes \\spad{x} onto stack \\spad{s,} \\spadignore{i.e.} destructively changing \\spad{s}} \\indented{1}{so as to have a new first (top) element \\spad{x.}} \\indented{1}{Afterwards, pop!(s) produces \\spad{x} and pop!(s) produces the original \\spad{s.}} \\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} push! a \\spad{X} a" + +--->bookvol10.2.pamphlet-->StackAggregate((pop! (S %))): Improper first word in comments: +"\\indented{1}{pop!(s) returns the top element \\spad{x,} destructively removing \\spad{x} from \\spad{s.}} \\indented{1}{Note that Use \\axiom{top(s)} to obtain \\spad{x} without removing it from \\spad{s.}} \\indented{1}{Error: if \\spad{s} is empty.} \\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} pop! a \\spad{X} a" + +--->bookvol10.2.pamphlet-->StackAggregate((top (S %))): Improper first word in comments: +"\\indented{1}{top(s) returns the top element \\spad{x} from \\spad{s;} \\spad{s} remains unchanged.} \\indented{1}{Note that Use \\axiom{pop!(s)} to obtain \\spad{x} and remove it from \\spad{s.}} \\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} top a" + +--->bookvol10.2.pamphlet-->StackAggregate((depth ((NonNegativeInteger) %))): Improper first word in comments: +"\\indented{1}{depth(s) returns the number of elements of stack \\spad{s.}} \\indented{1}{Note that \\axiom{depth(s) = \\#s}.} \\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} depth a" + diff --git a/changelog b/changelog index 646158d..660da0d 100644 --- a/changelog +++ b/changelog @@ -1,3 +1,7 @@ +20130318 rxb src/axiom-website/patches.html 20130318.02.tpd.patch +20130318 tpd buglist fix typos +20130318 tpd books/bookvol10.3 fix typos +20130318 tpd books/bookvol10.2 fix typos 20130318 rxb src/axiom-website/patches.html 20130318.01.rxb.patch 20130318 rxb src/algebra/Makefile add MatrixManipulation 20130318 rxb books/bookvol5 expose MatrixManipulation, add Raoul Bourquin diff --git a/src/axiom-website/patches.html b/src/axiom-website/patches.html index f2149be..1de25b7 100644 --- a/src/axiom-website/patches.html +++ b/src/axiom-website/patches.html @@ -4101,5 +4101,7 @@ books/bookvol10.2 REAL fix 40345 books/bookvol10.2 fix multiple typos 20130318.01.rxb.patch books/bookvol10.4 add MatrixManipulation +20130318.02.tpd.patch +books/bookvol10.2, bookvol10.3 fix typos