diff --git a/books/bookvolbib.pamphlet b/books/bookvolbib.pamphlet index 9c3290b..3a8b2b7 100644 --- a/books/bookvolbib.pamphlet +++ b/books/bookvolbib.pamphlet @@ -977,6 +977,16 @@ Ph.D. Thesis L'Universite De Limoges March 1992 \bibitem[Gomez-Diaz 93]{Gom93} G\'omez-D\'iaz, Teresa\\ ``Examples of using Dynamic Constructible Closure'' IMACS Symposium SC-1993 +%\verb|axiom-developer.org/axiom-website/papers/Gom93.pdf| + +\begin{adjustwidth}{2.5em}{0pt} +We present here some examples of using the ``Dynamic Constructible +Closure'' program, which performs automatic case distinction in +computations involving parameters over a base field $K$. This program +is an application of the ``Dynamic Evaluation'' principle, which +generalizes traditional evaluation and was first used to deal with +algebraic numbers. +\end{adjustwidth} \bibitem[Goodwin 91]{GBL91} Goodwin, B. M.; Buonopane, R. A.; Lee, A.\\ ``Using MathCAD in teaching material and energy balance concepts''\\ @@ -1582,6 +1592,27 @@ ISSAC '88 ``Algebraic Simplification: A Guide for the Perplexed''\\ CACM August 1971 Vol 14 No. 8 pp527-537 +\bibitem[Moses 08]{Mos08} Moses, Joel\\ +``Macsyma: A Personal History''\\ +Invited Presentation in Milestones in Computer Algebra, May 2008, Tobago\\ +\verb|esd.mit.edu/Faculty_Pages/moses/Macsyma.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Mos08.pdf| + +\begin{adjustwidth}{2.5em}{0pt} +The Macsyma system arose out of research on mathematical software in +the AI group at MIT in the 1960's. Algorithm development in symbolic +integration and simplification arose out of the interest of people, +such as the author, who were also mathematics students. The later +development of algorithms for the GCD of sparse polynomials, for +example, arose out of the needs of our user community. During various +times in the 1970's the computer on which Macsyma ran was one of the +most popular notes on the ARPANET. We discuss the attempts in the late +70's and the 80's to develop Macsyma systems that ran on popular +computer architectures. Finally, we discuss the impact of the +fundamental ideas in Macsyma on current research on large scale +engineering systems. +\end{adjustwidth} + \subsection{N} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \bibitem[Naylor]{NPxx} Naylor, William; Padget, Julian\\ @@ -1715,6 +1746,27 @@ A281 1986 ACM order number 505860 ``2014: 30+ Years Common Lisp the Language''\\ \verb|lispm.de/30ycltl| +\bibitem[Rioboo 03a]{Riob03a} Rioboo, Renaud\\ +``Quelques aspects du calcul exact avec des nombres r\'eels''\\ +Ph.D. Thesis, Laboratoire d'Informatique Th\'eorique et Programmationg +%\verb|axiom-developer.org/axiom-website/papers/Riob03a.ps| + +\bibitem[Rioboo 03]{Riob03} Rioboo, Renaud\\ +``Towards Faster Real Algebraic Numbers''\\ +J. of Symbolic Computation 36 pp 513-533 (2003) +%\verb|axiom-developer.org/axiom-website/papers/Riob03.pdf| + +\begin{adjustwidth}{2.5em}{0pt} +This paper presents a new encoding scheme for real algebraic number +manipulations which enhances current Axiom's real closure. Algebraic +manipulations are performed using different instantiations of +sub-resultant-like algorithms instead of Euclidean-like algorithms. +We use these algorithms to compute polynomial gcds and Bezout +relations, to compute the roots and the signs of algebraic +numbers. This allows us to work in the ring of real algebraic integers +instead of the field of read algebraic numbers avoiding many denominators. +\end{adjustwidth} + \bibitem[Robidoux 93]{Rob93} Robidoux, Nicolas\\ ``Does Axiom Solve Systems of O.D.E's Like Mathematica?''\\ July 1993 @@ -2436,11 +2488,13 @@ Comm. ACM. 17, 6 319--320. (1974) ``Products of polynomials and a priori estimates for coefficients in polynomial decompositions: a sharp result''\\ J. Symbolic Computation (1992) 13, 463-472 +%\verb|axiom-developer.org/axiom-website/papers/Bea92.pdf| \bibitem[Beauzamy 93]{Bea93} Beauzamy, Bernard; Trevisan, Vilmar; Wang, Paul S.\\ ``Polynomial Factorization: Sharp Bounds, Efficient Algorithms''\\ J. Symbolic Computation (1993) 15, 393-413 +%\verb|axiom-developer.org/axiom-website/papers/Bea93.pdf| \bibitem[Bertrand 95]{Ber95} Bertrand, Laurent\\ ``Computing a hyperelliptic integral using arithmetic in the jacobian @@ -2465,11 +2519,13 @@ Ginn \& Co., Boston and New York. (1962) ``Bounds for the Height of a Factor of a Polynomial in Terms of Bombieri's Norms: I. The Largest Factor''\\ J. Symbolic Computation (1993) 16, 115-130 +%\verb|axiom-developer.org/axiom-website/Boyd93a.pdf| \bibitem[Boyd 93b]{Boyd93b} Boyd, David W.\\ ``Bounds for the Height of a Factor of a Polynomial in Terms of Bombieri's Norms: II. The Smallest Factor''\\ J. Symbolic Computation (1993) 16, 131-145 +%\verb|axiom-developer.org/axiom-website/Boyd93b.pdf| \bibitem[Braman 02a]{BBM02a} Braman, K.; Byers, R.; Mathias, R.\\ ``The Multi-Shift QR Algorithm Part I: Maintaining Well Focused Shifts, @@ -2588,7 +2644,7 @@ INRIA Sophia Antipolis ISSAC 1998 Rostock \bibitem[Brown 99]{Brow99} Brown, Christopher W.\\ ``Solution Formula Construction for Truth Invariant CADs''\\ Ph.D Thesis, Univ. Delaware (1999) -\verb|www.usna.edu/Users/cs/wcbrown/reearch/thesis.ps.gz| +\verb|www.usna.edu/Users/cs/wcbrown/research/thesis.ps.gz| %\verb|axiom-developer.org/axiom-website/papers/Brow99.pdf| \begin{adjustwidth}{2.5em}{0pt} @@ -2864,6 +2920,33 @@ Journal of Pure and Applied Algebra V145 No 2 Jan 2000 pp149-163 equations''\\ A.E.R.E. Report R.8730. HMSO. (1977) +\bibitem[Duval 96a]{Duva96a} Duval, D.; Gonz\'alez-Vega, L.\\ +``Dynamic Evaluation and Real Closure''\\ +Mathematics and Computers in Simulation 42 pp 551-560 (1996) +%\verb|axiom-developer.org/axiom-website/papers/Duva96a.pdf| + +\begin{adjustwidth}{2.5em}{0pt} +The aim of this paper is to present how the dynamic evaluation method +can be used to deal with the real closure of an ordered field. Two +kinds of questions, or tests, may be asked in an ordered field: +equality tests $(a=b?)$ and sign tests $(a > b?)$. Equality tests are +handled through splittings, exactly as in the algebraic closure of a +field. Sign tests are handled throug a structure called ``Tarski data +type''. +\end{adjustwidth} + +\bibitem[Duval 96]{Duva96} Duval, D.; Reynaud, J.C.\\ +``Sketches and Computations over Fields''\\ +Mathematics and Computers in Simulation 42 pp 363-373 (1996) +%\verb|axiom-developer.org/axiom-website/papers/Duva96.pdf| + +\begin{adjustwidth}{2.5em}{0pt} +The goal of this short paper is to describe one possible use of +sketches in computer algebra. We show that sketches are a powerful +tool for the description of mathematical structures and for the +description of computations. +\end{adjustwidth} + \bibitem[Duval 94a]{Duva94a} Duval, D.; Reynaud, J.C.\\ ``Sketches and Computation (Part I): Basic Definitions and Static Evaluation''\\ Mathematical Structures in Computer Science, 4, p 185-238 Cambridge University Press (1994) @@ -3013,6 +3096,20 @@ Addison-Wesley. 181--187. (1965) Drinfeld-Vladut bound''\\ Invent. Math., vol. 121, 1995, pp. 211--222. +\bibitem[Gathen 90a]{Gat90a} Gathen, Joachim von zur; Giesbrecht, Mark\\ +``Constructing Normal Bases in Finite Fields''\\ +J. Symbolic Computation pp 547-570 (1990) +%\verb|axiom-developer.org/axiom-website/papers/Gat90a.pdf| + +\begin{adjustwidth}{2.5em}{0pt} +An efficient probabilistic algorithm to find a normal basis in a +finite field is presented. It can, in fact, find an element of +arbitrary prescribed additive order. It is based on a density estimate +for normal elements. A similar estimate yields a probabilistic +polynomial-time reduction from finding primitive normal elements to +finding primitive elements. +\end{adjustwidth} + \bibitem[Gathen 90]{Gat90} Gathen, Joachim von zur\\ ``Functional Decomposition Polynomials: the Tame Case''\\ Journal of Symbolic Computation (1990) 9, 281-299 @@ -3283,10 +3380,29 @@ SCRIPT Mathematical Formula Formatter User's Guide, SH20-6453, IBM Corporation, Publishing Systems Information Development, Dept. G68, P.O. Box 1900, Boulder, Colorado, USA 80301-9191. -\bibitem[Itoh 88]{IT88} Itoh, T.;, Tsujii, S.\\ +\bibitem[Itoh 88]{Itoh88} Itoh, T.;, Tsujii, S.\\ ``A fast algorithm for computing multiplicative inverses in $GF(2^m)$ using normal bases''\\ Inf. and Comp. 78, pp.171-177, 1988 +%\verb|axiom-developer.org/axiom-website/Itoh88.pdf| + +\begin{adjustwidth}{2.5em}{0pt} +This paper proposes a fast algorithm for computing multiplicative +inverses in $GF(2^m)$ using normal bases. Normal bases have the +following useful property: In the case that an element $x$ in +$GF(2^m)$ is represented by normal bases, $2^k$ power operation of an +element $x$ in $GF(2^m)$ can be carried out by $k$ times cyclic shift +of its vector representation. C.C. Wang et al. proposed an algorithm +for computing multiplicative inverses using normal bases, which +requires $(m-2)$ multiplications in $GF(2^m)$ and $(m-1)$ cyclic +shifts. The fast algorithm proposed in this paper also uses normal +bases, and computes multiplicative inverses iterating multiplications +in $GF(2^m)$. It requires at most $2[log_2(m-1)]$ multiplications in +$GF(2^m)$ and $(m-1)$ cyclic shifts, which are much less than those +required in Wang's method. The same idea of the proposed fast +algorithm is applicable to the general power operation in $GF(2^m)$ +and the computation of multiplicative inverses in $GF(q^m)$ $(q=2^n)$. +\end{adjustwidth} \bibitem[Iyanaga 77]{Iya77} Iyanaga, Shokichi; Iyanaga, Yukiyosi Kawada\\ ``Encyclopedic Dictionary of Mathematics''\\ @@ -3326,10 +3442,6 @@ Ph. D. Thesis, University of Linz, Austria, 1991 ``Algorithmic properties of polynomial rings''\\ Journal of Symbolic Computation 1998 -\bibitem[Kaltofen 84]{Kalt84} Kaltofen, E.\\ -``A Note on the Risch Differential Equation''\\ -Proc. EUROSAM pp 359-366 (1984) - \bibitem[Kantor 89]{Kan89} Kantor,I.L.; Solodovnikov, A.S.\\ ``Hypercomplex Numbers''\\ Springer Verlag Heidelberg, 1989, ISBN 0-387-96980-2 @@ -3802,6 +3914,11 @@ Rocky Mountain J. Math. 14 223--237. (1984) ``Free Lie Algebras''\\ Oxford University Press, June 1993 ISBN 0198536798 +\bibitem[Reznick 93]{Rezn93} Reznick, Bruce\\ +``An Inequality for Products of Polynomials''\\ +Proc. AMS Vol 117 No 4 April 1993 +%\verb|axiom-developer.org/axiom-website/papers/Rezn93.pdf| + \bibitem[Rich xx]{Rixx} Rich, A.D.; Jeffrey, D.J.\\ ``Crafting a Repository of Knowledge Based on Transformation''\\ \verb|www.apmaths.uwo.ca/~djeffrey/Offprints/IntegrationRules.pdf| @@ -3896,6 +4013,27 @@ Equations'' Proc. 23rd Nat. Conf. ACM. Brandon/Systems Press Inc., Princeton. 517--523. 1968 +\bibitem[Shirayanagi 96]{Shir96} Shirayanagi, Kiyoshi\\ +``Floating point Gr\"obner bases''\\ +Mathematics and Computers in Simulation 42 pp 509-528 (1996) +%\verb|axiom-developer.org/axiom-website/papers/Shir96.pdf| + +\begin{adjustwidth}{2.5em}{0pt} +Bracket coefficients for polynomials are introduced. These are like +specific precision floating point numbers together with error +terms. Working in terms of bracket coefficients, an algorithm that +computes a Gr\"obner basis with floating point coefficients is +presented, and a new criterion for determining whether a bracket +coefficient is zero is proposed. Given a finite set $F$ of polynomials +with real coefficients, let $G_\mu$ be the result of the algorithm for +$F$ and a precision $\mu$, and $G$ be a true Gr\"obner basis of +$F$. Then, as $\mu$ approaches infinity, $G_\mu$ converges to $G$ +coefficientwise. Moreover, there is a precision $M$ such that if +$\mu \ge M$, then the sets of monomials with non-zero coefficients of +$G_\mu$ and $G$ are exactly the same. The practical usefulness of the +algorithm is suggested by experimental results. +\end{adjustwidth} + \bibitem[Sims 71]{Sims71} Sims, C.\\ ``Determining the Conjugacy Classes of a Permutation Group''\\ Computers in Algebra and Number Theory, SIAM-AMS Proc., Vol. 4, @@ -3940,10 +4078,20 @@ Second Edition ISBN 1-55558-041-6 Digital Press (1990) ``Algebraic function fields and codes''\\ Springer-Verlag, 1993, University Text. -\bibitem[Stinson 90]{Sti90} Stinson, D.R.\\ +\bibitem[Stinson 90]{Stin90} Stinson, D.R.\\ ``Some observations on parallel Algorithms for fast exponentiation in $GF(2^n)$''\\ Siam J. Comp., Vol.19, No.4, pp.711-717, August 1990 +%\verb|axiom-developer.org/axiom-website/Stin90.pdf| + +\begin{adjustwidth}{2.5em}{0pt} +A normal basis represention in $GF(2^n)$ allows squaring to be +accomplished by a cyclic shift. Algorithms for multiplication in +$GF(2^n)$ using a normal basis have been studied by several +researchers. In this paper, algorithms for performing exponentiation +in $GF(2^n)$ using a normal basis, and how they can be speeded up by +using parallelization, are investigated. +\end{adjustwidth} \bibitem[Stroud 66]{SS66} Stroud A H.; Secrest D.\\ ``Gaussian Quadrature Formulas''\\ @@ -3987,6 +4135,13 @@ J. Comput. Phys. 52 1--23. (1983) ``Fast Mixed-Radix Real Fourier Transforms''\\ J. Comput. Phys. 52 340--350. (1983) +\bibitem[Thurston 94]{Thur94} Thurston, William P.\\ +``On Proof and Progress in Mathematics''\\ +Bulletin AMS Vol 30, No 2, April 1994\\ +\verb|www.ams.org/journals/bull/1994-30-02/S0273-0979-1994-00502-6/| +\verb|S0273-0979-1994-00502-6.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Thur94.pdf| + \subsection{U} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \bibitem[Unknown 61]{Unk61} Unknown\\ @@ -5147,7 +5302,21 @@ elimination method, uses only elementary linear algebra operations the degress of the solutions with finite support. As a consequence, we can boudn and compute the polynomial and rational solutions of very general linear functional systems such as systems of differential or -($q-$)difference equations. +($q$)-difference equations. +\end{adjustwidth} + +\bibitem[Bronstein 96b]{Bro96b} Bronstein, Manuel\\ +``On the Factorization of Linear Ordinary Differential Operators''\\ +Mathematics and Computers in Simulation 42 pp 387-389 (1996) +%\verb|axiom-developer.org/axiom-website/papers/Bro96b.pdf| + +\begin{adjustwidth}{2.5em}{0pt} +After reviewing the arithmetic of linear ordinary differential +operators, we describe the current status of the factorisation +algorithm, specially with respect to factoring over non-algebraically +closed constant fields. We also describe recent results from Singer +and Ulmer that reduce determining the differential Galois group of an +operator to factoring. \end{adjustwidth} \bibitem[Bronstein 96a]{Bro96a} Bronstein, Manuel; Petkovsek, Marko\\ @@ -6486,5 +6655,440 @@ differential, shift, and $q$-shift rings. \verb|shoup.net/ntb/ntb-v2.pdf| %\verb|axiom-developer.org/axiom-website/papers/Sho08.pdf| +\subsection{Polynomial Factorization} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\subsection{To Be Classified} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\bibitem[Kaltofen 82]{Kalt82} Kaltofen, E.\\ +``On the complexity of factoring polynomials with integer coefficients''\\ +PhD thesis, Rensselaer Polytechnic Instit. Troy, N.Y. Dec (1982) +\verb|www.math.ncsu.edu/~kaltofen/bibliography/82/Ka82_thesis.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt82.pdf| + +\bibitem[Kaltofen 82a]{Kalt82a} Kaltofen, E.\\ +``A polynomial-time reduction from bivariate to univariate integral polynomial factorization''\\ +Proc. 23rd Annual Symp. Foundations of Comp. Sci pp 57-64 IEEE (1982)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/82/Ka82_focs.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt82a.pdf| + +\bibitem[Kaltofen 82b]{Kalt82b} Kaltofen, E.\\ +``Polynomial Factorization''\\ +B. Buchberger, G. Collins, and R. Loos, editors, Computer Algebra pp 95-113 +Springer-Verlag Germany 2nd ed (1982)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/82/Ka82_survey.ps.gz| +%\verb|axiom-developer.org/axiom-website/papers/Kalt82b.ps| + +\bibitem[Kaltofen 83]{Kalt83} Kaltofen, E.\\ +``On the complexity of finding short vectors in integer lattices''\\ +Proc. EUROCAL'83 Vol 162 of LNCS, pp 236-244, Heidelberg, Germany, +Springer-Verlag (1983)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/83/Ka83_eurocal.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt83.pdf| + +\bibitem[Kaltofen 84]{Kalt84} Kaltofen, E.\\ +``A Note on the Risch Differential Equation''\\ +Proc. EUROSAM pp 359-366 (1984)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/84/Ka84_risch.ps.gz| +%\verb|axiom-developer.org/axiom-website/papers/Kalt84.ps| + +\bibitem[Kaltofen 84a]{Kalt84a} Kaltofen, E.; Yui, N.\\ +``Explicit construction of the Hilbert class field of imaginary quadratic +fields with class number 7 and 11''\\ +Proc. EUROSAM'84 pp 310-320\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/84/KaYui84_eurosam.ps.gz| +%\verb|axiom-developer.org/axiom-website/papers/Kalt84a.ps| + +\bibitem[Kaltofen 84b]{Kalt84b} Kaltofen, E.\\ +``The algebraic theory of integration''\\ +Lect. Notes, Rensselaer Polytechnic Instit. Dept. Comput. Sci. troy, NY 1984\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/84/Ka84_integration.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt84b.pdf| + +\bibitem[Kaltofen 85]{Kalt85} Kaltofen, E.\\ +``Effective Hilbert irreducibility''\\ +Information and Control, 66 pp 123-137 (1985)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/85/Ka85_infcontr.ps.gz| +%\verb|axiom-developer.org/axiom-website/papers/Kalt85.ps| + +\bibitem[Kaltofen 85a]{Kalt85a} Kaltofen, E.\\ +``Fast parallel absolute irreducibility testing''\\ +J. Symbolic Comput. 1(1) pp 57-67 (1985)\\ +Corrections: J. Symbolic Comput. vol 9 p 320 (1989)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/85/Ka85_jsc.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt85a.pdf| + +\bibitem[Kaltofen 85b]{Kalt85b} Kaltofen, E.\\ +``Computing with polynomials given by straight-line programs II; sparse +factorization''\\ +Proc. 26th Annual Symp. Foundations of Comp. Sci. pp 451-458 IEEE (1985)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/85/Ka85_focs.ps.gz| +%\verb|axiom-developer.org/axiom-website/papers/Kalt85b.ps| + +\bibitem[Kaltofen 85c]{Kalt85c} Kaltofen, E.\\ +``Sparse Hensel lifting''\\ +Technical Report 85-12, Rensselaer Polytechnic Instit. Dept. Comp. Sci., +Troy, NY 1985\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/85/Ka85_techrep.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt85c.pdf| + +\bibitem[Kaltofen 85d]{Kalt85d} Kaltofen, E.\\ +``Sparse Hensel lifting''\\ +EUROCAL 85 European COnf. Comput. Algebra Proc. Vol 2 pp 4-17\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/85/Ka85_eurocal.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt85d.pdf| + +\bibitem[Kaltofen 85e]{Kalt85e} Kaltofen, E.\\ +``Polynomial-time reductions from multivariate to bi- and univariate integral polynomial factorization''\\ +SIAM J. Comput. 14(2) pp 469-489 (1985)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/85/Ka85_sicomp.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt85e.pdf| + +\bibitem[Gathen 85]{Gath85} Gathen, Joachim von zur; Kaltofen, E. +``Factoring multivariate polynomials over finite fields''\\ +Math. Comput. 45 pp 251-261 (1985)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/85/GaKa85_mathcomp.ps.gz| +%\verb|axiom-developer.org/axiom-website/papers/Gath85.ps| + +\bibitem[Kaltofen 86]{Kalt86} Kaltofen, E.\\ +``Uniform closure properties of p-computable functions''\\ +Proc. 18th Annual ACM Symp. Theory Comput. pp 330-337 ACM (1986)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/86/Ka86_stoc.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt86.pdf| + +\bibitem[Kaltofen 87]{Kalt87} Kaltofen, E.; Krishnamoorthy, M.S.; +Saunders, B.D.\\ +``Fast parallel computation of Hermite and Smith forms of polynomial matrices''\\ +SIAM J. Alg. Discrete Math. 8 pp 683-690 (1987)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/87/KKS87.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt87.pdf| + +\bibitem[Kaltofen 87a]{Kalt87a} Kaltofen, E.\\ +``Computer algebra algorithms''\\ +in J.F. Traub, ed. Annual Review in Computer Science, vol 2 pp 91-118 +Annual Reviews Inc. Palo Alto, CA 1987\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/87/Ka87_annrev.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt87a.pdf| + +\bibitem[Kaltofen 87b]{Kalt87b} Kaltofen, E.\\ +``Single-factor Hensel lifting and its application to the straight-line +complexity of certain polynomial.''\\ +Proc. 19th Annual ACM Symp. Theory Comput. pp 443-452 ACM 1987\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/87/Ka87_stoc.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt87b.pdf| + +\bibitem[Kaltofen 87c]{Kalt87c} Kaltofen, E.\\ +``Deterministic irreducibility testing of polynomials over large finite fields''\\ +J. Symbolic Comput. 4 pp 77-82 (1987)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/87/Ka87_jsc.ps.gz| +%\verb|axiom-developer.org/axiom-website/papers/Kalt87c.ps| + +\bibitem[Kaltofen 88]{Kalt88} Kaltofen, E.; Trager, B.\\ +``Computing with polynomials given by black boxes for their evaluations: +Greatest common divisors, factorization, separation of numerators and +denominators''\\ +Proc. 29th Annual Symp. Foundations of Comp. Sci. pp 296-305 IEEE (1988)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/88/focs88.ps.gz| +%\verb|axiom-developer.org/axiom-website/papers/Kalt88.ps| + +\bibitem[Miller 88]{Mill88} Miller, G.L.; Ramachandran, V.; Kaltofen, E.\\ +``Efficient parallel evaluation of straight-line code and arithmetic circuits''\\ +SIAM J. Comput. 17(4) pp 687-695 (1988)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/88/MRK88.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Mill88.pdf| + +\bibitem[Kaltofen 88a]{Kalt88a} Kaltofen, E.; Yagati, Lakshman\\ +``Improved sparse multivariate polynomial interpolation algorithms''\\ +in Symbolic Algebraic Comput. Internat. Symp. ISSAC'88 pp 467-474\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/88/KaLa88.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt88a.pdf| + +\bibitem[Kaltofen 88b]{Kalt88b} Kaltofen, E.\\ +``Greatest common divisors of polynomials given by straight-line programs''\\ +J. ACM 35(1) pp 231-264 (1988)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/88/Ka88_jacm.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt88b.pdf| + +\bibitem[Freeman 88]{Free88} Freeman, T.S.; Imirzian, G.; Kaltofen, E.; +Yagati, Lakshman\\ +``DAGWOOD: A system for manipulating polynomials given by straight-line +programs''\\ +ACM Trans. Math. Software 14(3) pp 218-240 (1988)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/88/FIKY88.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Free88.pdf| + +\bibitem[Gregory 88]{Greg88} Gregory, B.; Kaltofen, E.\\ +``Analysis of the binary complexity of asymptotically fast algorithms for +linear system solving''\\ +SIGSAM Bulletin 22(2) pp 41-49 (1988)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/88/GrKa88.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Greg88.pdf| + +\bibitem[Kaltofen 89]{Kalt89} Kaltofen, E.\\ +``Factorization of polynomials given by straight-line programs''\\ +in S. Micali ed. Randomness and Computation, Vol 5 of Advances in Computer +Research, pp 375-412, JAI Press, Greenwhich, CT 1989\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/89/Ka89_slpfac.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt89.pdf| + +\bibitem[Kaltofen 89a]{Kalt89a} Kaltofen, E.; Rolletschek, H.\\ +``Computing greatest common divisors and factorizations in quadratic number +fields''\\ +Math. Comput. 53(188) pp 697-720 (1989)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/89/KaRo89.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt89a.pdf| + +\bibitem[Kaltofen 89b]{Kalt89b} Kaltofen, E.\\ +``Processor efficient parallel computation of polynomial greatest common +divisors''\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/89/Ka89_gcd.ps.gz| +%\verb|axiom-developer.org/axiom-website/papers/Kalt89b.ps| + +\bibitem[Kaltofen 89c]{Kalt89c} Kaltofen, E.\\ +``Parallel algebraic algorithm design''\\ +Lect. Notes, Rensselaer Polytechnic Instit. Dept. Comput. Sci. Troy, NY +(1989); Tutorial 1989 Int. Symp. Symb. Algebraic Comput. Portland, OR\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/89/Ka89_parallel.ps.gz| +%\verb|axiom-developer.org/axiom-website/papers/Kalt89c.ps| + +\bibitem[Canny 89]{Cann89} Canny, J.; Kaltofen, E.; Yagati, Lakshman\\ +``Solving systems of non-linear polynomial equations faster''\\ +Proc 1989 Int. Symp. Symbolic Algebraic Comput. (ISSAC'89) pp 121-128\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/89/CKL89.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Cann89.pdf| + +\bibitem[Kaltofen 89d]{Kalt89d} Kaltofen, E.; Valente, T.; Yui, N.\\ +``An improved Las Vegas primality test''\\ +Proc 1989 Int. Symp. Symbolic Algebraic Comput. (ISSAC'89) pp 26-33\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/89/KVY89.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt89d.pdf| + +\bibitem[Kaltofen 90]{Kalt90} Kaltofen, E.; Lakshman, Y.N.; Wiley, J.M.\\ +``Modular rational sparse multivariate polynomial inerpolation''\\ +ISSAC'90 pp 135-139 ACM Press (1990)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/90/KLW90.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt90.pdf| + +\bibitem[Kaltofen 90a]{Kalt90a} Kaltofen, E.; Krishnamoorthy, M.S.; +Saunders, B.D.\\ +``Parallel algorithms for matrix normal forms''\\ +Linear Algebra and Applications 136 pp 189-208 (1990)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/90/KKS90.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt90a.pdf| + +\bibitem[Kaltofen 90b]{Kalt90b} Kaltofen, E.\\ +``Computing the irreducible real factors and components of an algebraic +curve''\\ +Applic. Algebra Engin. Commun. Comput. 1(2) pp 135-148 (1990)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/90/Ka90_aaecc.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt90b.pdf| + +\bibitem[Kaltofen 90c]{Kalt90c} Kaltofen, E.\\ +``Polynomial factorization 1982-1986''\\ +in D.V. Chudnovsky and R.D. Jenks (ed) Computers in Mathematics vol 125 +of Lecture Notes in Pure and Applied Mathematics pp 285-309 Marcel +Dekker, Inc NY, 1990\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/90/Ka90_survey.ps.gz| +%\verb|axiom-developer.org/axiom-website/papers/Kalt90c.ps| + +\bibitem[Kaltofen 90d]{Kalt90d} Kaltofen, E.; Trager, B.\\ +``Computing with polynomials given by black boxes for their evaluations: +Greatest common divisors, factorization, separation of numerators and +denominators''\\ +J. Symbolic Comput. 9(3) pp 301-320 (1990)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/90/KaTr90.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt90d.pdf| + +\bibitem[Kaltofen 91]{Kalt91} Kaltofen, E.; Saunders, B.D.\\ +``On Wiedemann's method of solving sparse linear systems''\\ +in H.F.Mattson, T.Mora, and T.R.N. Rao (ed) Proc. AAECC-9 Vol 539 +LNCS pp 29-38 Heidelberg, Germany 1991 Springer-Verlag\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/91/KaSa91.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt91.pdf| + +\bibitem[Kaltofen 91a]{Kalt91a} Kaltofen, E.; Singer, M.F.\\ +``Size efficient parallel algebraic circuits for partial derivatives''\\ +in D.V. Shirkov, V.A.Rostovtsev, and V.P.Gerdt (ed) IV Int. Conf. on +Computer Algebra in Physical Research pp 133-145 Singapore 1991 +World Scientific Publ. Co.\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/91/KaSi91.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt91a.pdf| + +\bibitem[Kaltofen 91b]{Kalt91b} Kaltofen, E.; Yui, N.\\ +``Explicit construction of Hilbert class fields of imaginary quadratic +fields by integer lattice reduction''\\ +in D.V. Chudnovsky, G.V. Chudnovsky, H. Cohn, and M.B. Nathason (ed) +Number Theory New York Seminar 1989-1990 pp 150-202 Springer-Verlag +Heidelberg, Germany 1991\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/91/KaYui91.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt91b.pdf| + +\bibitem[Diaz 91]{Diaz91} Diaz, A.; Kaltofen,E.; Schmitz, K.; Valente, T.\\ +``DSC A system for distributed symbolic computation''\\ +ISSAC'91 pp 323-332\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/91/DKSV91.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Diaz91.pdf| + +\bibitem[Kaltofen 91c]{Kalt91c} Kaltofen, E.; Pan, V.\\ +``Processor efficient parallel solution of linear systems over an abstract +field''\\ +Proc. SPAA'91 3rd Ann. ACM Symp. Parallel Algor. Architecture, pp 180-191, +NY (1991) ACM Press\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/91/KaPa91.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt91c.pdf| + +\bibitem[Cantor 91]{Cant91} Cantor, D.G.; Kaltofen, E.\\ +``On fast multiplication of polynomials over arbitrary algebras''\\ +Acta Inform. 28(7) pp 693-701 (1991)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/91/CaKa91.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Cant91.pdf| + +\bibitem[Kaltofen 92]{Kalt92} Kaltofen, E.; Pan, V.\\ +``Processor-efficient parallel solution of linear systems II: the positive +characteristic and singular cases''\\ +Proc. 33rd Annual Symp. Foundations of Comp. Sci. pp 714-723, Los Alamitos, +CA (1992) IEEE Computer Society Press\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/92/KaPa92.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt92.pdf| + +\bibitem[Kaltofen 92a]{Kalt92a} Kaltofen, E.\\ +``On computing determinants of matrices without divisions''\\ +ISSAC'92 pp 342-349 (1992)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/92/Ka92_issac.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt92a.pdf| + +\bibitem[Kaltofen 92b]{Kalt92b} Kaltofen, E.\\ +``Polynomial factorization 1987-1991''\\ +I.Simon (ed) Proc. LATIN'92 Vol 583 of LNCS pp 294-313 Heidelberg, +Germany (1992) Springer-Verlag\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/92/Ka92_latin.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt92b.pdf| + +\bibitem[Kaltofen 93]{Kalt93} Kaltofen, E.\\ +``Computational differentiation and algebraic complexity theory''\\ +in C.H.Bischof, A.Griewantk, and P.M.Khademi (ed) Workshop Report on First +Theory Institute on Computational Differentiation, Vol ANL/MCS-TM-183 +of Tech. Rep. pp 28-30 Argone, IL, Argonne National Lab\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/93/Ka93_diff.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt93.pdf| + +\bibitem[Kaltofen 93a]{Kalt93a} Kaltofen, E.\\ +``Dynamic parallel evaluation of computational DAGs''\\ +in J. Reif (ed) Synthesis of Parallel Algorithms pp 723-758 Morgan Kaufmann +Publ. San Mateo CA\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/93/Ka93_synthesis.ps.gz| +%\verb|axiom-developer.org/axiom-website/papers/Kalt93a.ps| + +\bibitem[Diaz 93]{Diaz93} Diaz, A.; Kaltofen, E.; Lobo, A.; Valente, T.\\ +``Process scheduling in DSC and the large sparse linear systems challenge''\\ +in A. Miola (ed) DISCO'93 vol 722 of LNCS pp 66-80 Springer-Verlag\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/93/DHKLV93.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Diaz93.pdf| + +\bibitem[Kaltofen 93b]{Kalt93b} Kaltofen, E.\\ +``Analysis of Coppersmith's block Wiedemann algorithm for the parallel +solution of sparse linear systems''\\ +In G. Cohen, T. Mora, O. Moreno (eds) Proc AAECC-10, Vol 673 LNCS +Heidelberg, Germany (1992) Springer-Verlag\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/93/Ka93_sambull.ps.gz| +%\verb|axiom-developer.org/axiom-website/papers/Kalt93b.ps| + +\bibitem[Kaltofen 93c]{Kalt93c} Kaltofen, E.\\ +``Direct proof of a theorem by Kalkbrener, Sweedler, and Taylor''\\ +SIGSAM Bulletin, 27(4), 1993\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/93/Ka93_sambull.ps.gz| +%\verb|axiom-developer.org/axiom-website/papers/Kalt93b.ps| + +\bibitem[Kaltofen 94]{Kalt94} Kaltofen, E.; Pan, V.\\ +``Parallel solution of Toeplitz and Toeplitz-like linear systems over fields +of small positive characteristic''\\ +PASCO'94 pp 225-233 (1994)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/94/KaPa94.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt94.pdf| + +\bibitem[Chan 94]{Chan94} Chan, K.C.; Diaz, A.; Kaltofen, E.\\ +``A distributed approach to problem solving in Maple''\\ +in R.J. Lopez (ed) Maple V: Mathmatics and its Application, Proc. Maple +Summer Workshop and Symposium (MSWS'94) pp 13-21, Boston 1994 Birkh\"auser\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/94/CDK94.ps.gz| +%\verb|axiom-developer.org/axiom-website/papers/Chan94.ps| + +\bibitem[Kaltofen 94a]{Kalt94a} Kaltofen, E.; Lobo, A.\\ +``Factoring high-degree polynomials by the black box Berlekamp algorithm''\\ +ISSAC'94 pp 90-98\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/94/KaLo94.ps.gz| +%\verb|axiom-developer.org/axiom-website/papers/Kalt94a.ps| + +\bibitem[Kaltofen 94b]{Kalt94b} Kaltofen, E.\\ +``Asymptotically fast solution of Toeplitz-like singular linear systems''\\ +ISSAC'94, pp 297-304 +\verb|www.math.ncsu.edu/~kaltofen/bibliography/94/Ka94_issac.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt94b.pdf| + +\bibitem[Samadani 95]{Sama95} Samadani, M.; Kaltofen, E.\\ +``Prediction based task scheduling in distributed computing''\\ +in B.K. Szymanski and B. Sinharoy (ed) Languages, Compilers and Run-Time +Systems for Scalable Computers, pp 317-329, Boston 1996 Kluwer Academic Publ.\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/95/SaKa95_poster.ps.gz| +%\verb|axiom-developer.org/axiom-website/papers/Sama95.ps| + +\bibitem[Kaltofen 95]{Kalt95} Kaltofen, E.\\ +``Analysis of Coppersmith's blcok Wiedemann algorithm for the parallel +solution of sparse linear systems''\\ +Math. Comput. 64(210) pp 777-806 (1995)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/95/Ka95_mathcomp.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt95.pdf| + +\bibitem[Diaz 95]{Diaz95} Diaz, A.; Kaltofen, E.\\ +``On computing greatest common divisors with polynomials given by black +boxes for their evaluation''\\ +ISSAC'95 pp 232-239\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/95/DiKa95.ps.gz| +%\verb|axiom-developer.org/axiom-website/papers/Diaz95.ps| + +\bibitem[Kaltofen 95a]{Kalt95a} Kaltofen, E.; Shoup, V.\\ +``Subquadratic-time factoring of polynomials over finite fields''\\ +Proc. 27th Annual ACM Symp. Theory Comput. pp 398-406 NY (1995) ACM Press\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/95/KaSh95.ps.gz| +%\verb|axiom-developer.org/axiom-website/papers/Kalt95a.ps| + +\bibitem[Hitz 95]{Hitz95} Kitz, M.A.; Kaltofen, E.\\ +``Integer division in residue number systems''\\ +IEEE Trans. Computers 44(8) pp 983-989 (1995)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/95/HiKa95.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Hitz95.pdf| + +\bibitem[Diaz 95a]{Diaz95a} Diaz, A.; Hitz, M.; Kaltofen, E.; Lobo, A.; +Valtente, T.\\ +``Process scheduling in DSC and the large sparse linear systems challenge''\\ +J. Symbolic Comput 19(1-3) pp 269-282 (1995)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/95/DHKLV95.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Diaz95a.pdf| + +\bibitem[Kaltofen 95b]{Kalt95b} Kaltofen, E.\\ +``Effective Noether irreducibility forms and applications''\\ +J. Comput. System Sci. 50(2) pp 274-295 (1995)\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/95/Ka95_jcss.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt95b.pdf| + +\bibitem[Erlingsson 96]{Erli96} Erlingsson, U.; Kaltofen, E.; Musser, D.\\ +``Generic Gram-Schmidt orthgonalization by exact division''\\ +ISSAC'96 pp 275-282\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/96/EKM96.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Erli96.pdf| + +\bibitem[Kaltofen 96]{Kalt96} Kaltofen, E.; Lobo, A.\\ +``On rank properties of Toeplitz matrices over finite fields''\\ +ISSAC'96 pp 241-249\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/96/KaLo96_issac.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt96.pdf| + +\bibitem[Kaltofen 96a]{Kalt96a} Kaltofen, E.; Lobo, A.\\ +``Distributed matrix-free solution of large sparse linear systems over finite +fields''\\ +in A.M.Tentner (ed) Proc. High Performance Computing'96 pp 244-247 San Diego +CA (1996) Soc. for Comp. Simultation, Simulation Councils, Inc.\\ +\verb|www.math.ncsu.edu/~kaltofen/bibliography/96/KaLo96_hpc.pdf| +%\verb|axiom-developer.org/axiom-website/papers/Kalt96a.pdf| + \end{thebibliography} \end{document} diff --git a/changelog b/changelog index 6b27e09..373a895 100644 --- a/changelog +++ b/changelog @@ -1,3 +1,5 @@ +20140914 tpd src/axiom-website/patches.html 20140914.01.tpd.patch +20140914 tpd books/bookvolbib add Kaltofen references 20140912 tpd src/axiom-website/patches.html 20140912.01.tpd.patch 20140912 tpd books/axiom.sty add the sig markup 20140907 tpd src/axiom-website/patches.html 20140907.01.tpd.patch diff --git a/patch b/patch index d04f03d..c4d3edc 100644 --- a/patch +++ b/patch @@ -1,9 +1,3 @@ -books/axiom.sty add the sig markup +books/bookvolbib add Kaltofen references -Shows the signature of a lisp function so - \sig{mkprompt}{Void}{String} -generates - {\bf mkprompt} : {\bf Void} $->$ {\bf String} -which formats to - mkprompt : Void -> String -and an index of mkprompt under signatures +Eric Kaltofen reference works added. diff --git a/src/axiom-website/patches.html b/src/axiom-website/patches.html index 4a3bbcb..e404902 100644 --- a/src/axiom-website/patches.html +++ b/src/axiom-website/patches.html @@ -4634,6 +4634,8 @@ books/bookvol10.3 add SparseEchelonMatrix domain
src/input/groeb.input test case for groebner basis
20140912.01.tpd.patch books/axiom.sty add the sig markup
+20140914.01.tpd.patch +books/bookvolbib add Kaltofen references